шјес cbac

GCE A LEVEL MARKING SCHEME

SUMMER 2017

A LEVEL (NEW)
CHEMISTRY - UNIT 5 1410U50-1

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

A2 UNIT 5: PRACTICAL EXAMINATION

EXPERIMENTAL TASK

MARK SCHEME

GENERAL INSTRUCTIONS
Recording of marks
Examiners must mark in red ink.
The mark total should be entered onto the grid on the front cover.
Marking rules
All work should be seen to have been marked.
Crossed out responses not replaced should be marked.
Marking abbreviations
The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.
cao = correct answer only
ecf = error carried forward
bod $=$ benefit of doubt

A2 UNIT 5: PRACTICAL EXAMINATION

EXPERIMENTAL TASK
MARK SCHEME Test 1

Skill		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
Parts A \& B	Teacher-awarded marks		working safely (1) efficient use of time (1) dilution (1)	3			3		3
Part A	Titration data - table	appropriate tables drawn including units (1) all three titles (1)		2		2		2	
	Titration data - recording	correct mass and titres (1) all readings recorded to $0.05 \mathrm{~cm}^{3}$ (1)		2		2		2	
	Titration data - mean titre	concordant titres selected (1) mean value for titre calculated (1)		1	1	2		2	

Skill		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
Part A	Titration data - accuracy		comparison with teacher's results		5		5		5
Part B	Observations	sodium hydroxide - solution \mathbf{X} - green precipitate (turning brown at surface) - solution \mathbf{Y} - blue precipitate - solution \mathbf{Z} - white precipitate; dissolves in excess potassium iodide - solution \mathbf{X} - no visible change - solution \mathbf{Y} - brown solution \& white precipitate - solution \mathbf{Z} - no visible change barium chloride - solution \mathbf{X} - white precipitate - solution \mathbf{Y} - white precipitate - solution \mathbf{Z} - white precipitate See alternative version when marking Test 2		1 1 1 1 1 1		6		6	

Skill	Question	Marking details	Marks available					
			A01	AO2	AO3	Total	Maths	Prac
Part A Analysis of results	(i)	number of moles of MnO_{4}^{-}ions $=\frac{c \times \text { mean titre }}{1000}$		1		1	1	1
	(ii)	$\mathrm{MnO}_{4}^{-}+5 \mathrm{Fe}^{2+}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{2+} 4 \mathrm{H}_{2} \mathrm{O}$		1		1	1	1
	(iii)	number of moles of iron(II) ions in $25 \mathrm{~cm}^{3}$ $5 \times$ value from part (i) allow ecf based on candidate's equation number of moles of iron(II) ions in $250 \mathrm{~cm}^{3}$ $50 \times$ value from part (i)			2	2	2	2
	(iv)	mass of iron(II) sulfate present in original sample $151.9 \times$ final answer from part (iii)			1	1	1	1
	(v)	percentage of iron(II) sulfate in "Moss Killer" $=\frac{\text { value from part (iii) }}{\text { mass }} \times 1000$ must make reference to comment on the container			1	1	1	1

Part B Analysis of results	(vi)	solution \mathbf{X} - Fe^{2+} - green precipitate with $\mathrm{OH}^{-}(\mathrm{aq})$ (turning brown at surface) (1) solution \mathbf{Y} - Cu^{2+} - blue precipitate with $\mathrm{OH}^{-}(\mathrm{aq}) /$ brown solution \& white precipitate with $\mathrm{I}^{-}(\mathrm{aq})(1)$ solution \mathbf{Z} - Zn^{2+} - white precipitate with $\mathrm{OH}^{-}(\mathrm{aq})$ (dissolves in excess $\mathrm{OH}^{-}(\mathrm{aq})$) accept colourless solution linked to full d-shell (1) See alternative version when marking Test 2			1 1 1	3		3
	(vii)	$\mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})$		1		1		1
	Total		3	19	8	30	6	30

Mark Scheme Amendments for Test 2

Part B Analysis of results	(vi)	solution X - Cu^{2+} - blue precipitate with $\mathrm{OH}^{-}(\mathrm{aq}) /$ brown solution \& white precipitate with $\mathrm{I}^{-}(\mathrm{aq})$ (1) solution \mathbf{Y} - Zn^{2+} - white precipitate with $\mathrm{OH}^{-}(\mathrm{aq})$ (dissolves in excess $\mathrm{OH}^{-}(\mathrm{aq})$) accept colourless solution linked to full d-shell (1) solution Z - Fe^{2+} - green precipitate with $\mathrm{OH}^{-}(\mathrm{aq})$ (turning brown at surface) (1)	1 1	3	3

PRACTICAL METHODS AND ANALYSIS TASK

MARK SCHEME

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
1.	(a)			$\begin{align*} & n=\frac{P V}{R T}=\frac{\left(1.01 \times 10^{5}\right) \times\left(93 \times 10^{-6}\right)}{8.31 \times 295}=0.00383 \mathrm{~mol}\left(\mathrm{O}_{2} \text { gas }\right)(1) \\ & n\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)=2 \times 0.00383=0.00766 \mathrm{~mol} \tag{1}\\ & v=\frac{n}{c}=\frac{0.00766}{0.306}=0.0250 \mathrm{dm}^{3} / 25.0 \mathrm{~cm}^{3} \tag{1} \end{align*}$ unit must correspond to volume for final mark ecf possible throughout	1	1 1		3	1 1	
	(b)	(i)	suitable scale on x-axis and y-axis (1) points plotted (± 1 square) (1) curve of best fit drawn through origin (1) initial rate of reaction from tangent drawn at $t=0$ $47\left(\mathrm{~cm}^{3} \mathrm{~min}^{-1}\right) \quad$ accept range 44-50 conversion to units of $\mathrm{dm}^{3} \mathrm{~s}^{-1}$ $\frac{47}{1000 \times 60}=7.83 \times 10^{-4}$ must be in standard form $\begin{equation*} \text { accept range } 7.33 \times 10^{-4} \text { to } 8.33 \times 10^{-4} \tag{1} \end{equation*}$ ecf possible throughout	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{align*} & 1 \tag{1}\\ & 1 \end{align*}$	5	1 1 1 1 1	5	

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
	(ii)		rate $=2 \times$ initial rate of oxygen formation e.g. $1.57 \times 10^{-3} \mathrm{dm}^{3} \mathrm{~s}^{-1} / 94 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$ allow ecf on rate calculated from b(i); unit not needed rate is double because the ratio of moles of $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}): \mathrm{O}_{2}(\mathrm{~g})$ is $2: 1$ (1)			1 1	2		
(c)		award (1) for each of following points - fair test using same volume of $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$ each time / same temperature (of $22^{\circ} \mathrm{C}$ if using data given in the stem of the question) / (same mass of catalyst / same surface area of catalyst) - comparison of rate at two or more different concentrations of $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$ e.g. $0.306 \mathrm{~mol} \mathrm{dm}^{-3}$ and $0.153 \mathrm{~mol} \mathrm{dm}^{-3}$ - rate at $0.153 \mathrm{~mol} \mathrm{dm}^{-3}$ would be half the rate at $0.306 \mathrm{~mol} \mathrm{dm}^{-3}$ / rate is directly proportional to $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$			3	3		3	
(d)		any one of the following methods and sensible reasoning - follow loss in mass over time because $\mathrm{O}_{2}(\mathrm{~g})$ is evolved - follow pressure over time because $\mathrm{O}_{2}(\mathrm{~g})$ is evolved - sample at regular time intervals, quench and titrate (against $\mathrm{MnO}_{4}{ }^{-} / \mathrm{H}^{+}$) to find $\mathrm{H}_{2} \mathrm{O}_{2}$ concentration at those times	1			1		1	
		Question 1 total	3	4	7	14	7	9	

A2 UNIT 5: PRACTICAL EXAMINATION

SUMMARY OF ASSESSMENT OBJECTIVES

	Question	A01	AO2	AO3	TOTAL MARK	MATHS	PRAC
Experimental Task	Total	3	19	8	30	6	30
Practical Methods and Analysis Task	1.	3	4	7	14	7	9
	2.	1	4	3	8	1	3
	3.	4	4	0	8	0	8
		11	31	18	60	14	50

