Centre Number

Other Names

chac

GCE A LEVEL wjec

1410U30-1

CHEMISTRY – A2 unit 3 Physical and Inorganic Chemistry

TUESDAY. 13 JUNE 2017 – AFTERNOON

NEW

1 hour 45 minutes

	For Examiner's use only								
	Question	Maximum Mark	Mark Awarded						
Section A	1. to 6.	10							
Section B	7.	7							
	8.	10							
	9.	15							
	10.	11							
	11.	10							
	12.	17							
	Total	80							

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a:

• calculator:

• Data Booklet supplied by WJEC.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Section A Answer all questions in the spaces provided.

Section B Answer all questions in the spaces provided.

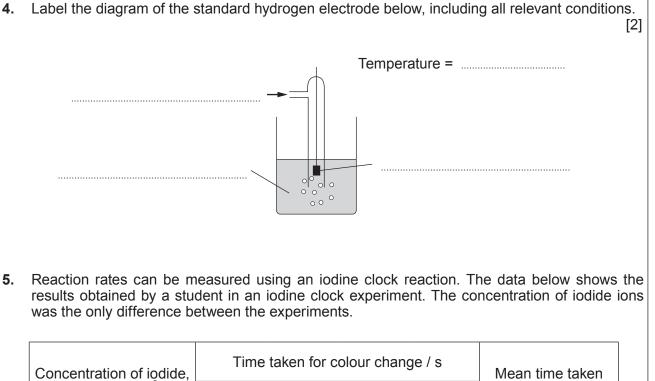
Candidates are advised to allocate their time appropriately between Section A (10 marks) and Section B (70 marks).

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.


The assessment of the quality of extended response (QER) will take place in **Q.8**(b).

If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

	SECTION A	
	Answer all questions in the spaces provided.	
When aqueous formed.	s iodide ions are added to an aqueous solution of leac	l(II) nitrate, a precipitate is
(a) Give the	e colour of the precipitate.	[1]
(b) Write ar	n ionic equation for the reaction that occurs, including s	state symbols. [1]
Give an exam	uple of a transition metal used as a catalyst. You she	ould name the metal and [1]
		to ovalain why this is the
	ide, CaCl ₂ , is soluble in water. Use the values below	to explain why this is the [2]
Calcium chlori		
Calcium chlori case. Equation 1	ide, CaCl ₂ , is soluble in water. Use the values below	[2] Δ <i>H</i> ^θ = −2237 kJ mol ^{−1}
Calcium chlori case. Equation 1	ide, $CaCl_2$, is soluble in water. Use the values below $Ca^{2+}(g) + 2Cl^{-}(g) \longrightarrow CaCl_2(s)$	[2] Δ <i>H</i> ^θ = −2237 kJ mol ^{−1}
Calcium chlori case. Equation 1	ide, $CaCl_2$, is soluble in water. Use the values below $Ca^{2+}(g) + 2Cl^{-}(g) \longrightarrow CaCl_2(s)$	[2] Δ <i>H</i> ^θ = −2237 kJ mol ^{−1}
Calcium chlori case. Equation 1	ide, $CaCl_2$, is soluble in water. Use the values below $Ca^{2+}(g) + 2Cl^{-}(g) \longrightarrow CaCl_2(s)$	[2] Δ <i>H</i> ^θ = −2237 kJ mol ^{−1}
Calcium chlori case. Equation 1	ide, $CaCl_2$, is soluble in water. Use the values below $Ca^{2+}(g) + 2Cl^{-}(g) \longrightarrow CaCl_2(s)$	[2] Δ <i>H</i> ^θ = −2237 kJ mol ^{−1}

Concentration of iodide,	Ime	taken for c	Mean time taken		
Concentration of iodide, [I ⁻] / mol dm ⁻³	1 st run 2 nd run 3 rd run 4 th run		/ s		
0.200	35	46	36	34	
0.400	18	17	18	17	

© WJEC CBAC Ltd.

Examiner only

> 1410U301 03

	nitrogen gas	copper metal	water	air	
Lowest					Highest

Examiner **SECTION B** Answer all questions in the spaces provided. 7. Ammonia is an example of a weak base. Describe what is meant by the term weak (a) base. [1] (b) A mixture of ammonia and ammonium chloride in aqueous solution can be used as a basic buffer solution. Explain what is meant by a *buffer solution* and how this mixture can act as a buffer solution. [3]

5

only

(ii) Select an appropriate indicator for this titration from the list below, giving a reason for your answer. [1]

7

Indicator	pH range
bromothymol blue	6.0 – 7.6
4-nitrophenol	5.0 – 7.0
methyl yellow	2.9 - 4.0
phenolphthalein	8.2 – 10.0

Examiner only

> 1410U301 07

(a)		e elements in the <i>p</i> -block form compounds where the <i>p</i> -block atom does not have
	eight	electrons in its outer shell.
	(i)	Explain why nitrogen can only form a chloride with eight outer shell electrons, but phosphorus can form a chloride with a different number of outer shell electrons.[2]
		You should give the chemical formulae of relevant compounds in your answer.
	(ii)	Explain why aluminium forms compounds that are electron deficient. Show how
	. /	one of these compounds can act to gain a full outer shell. [2]
		You should give the dot and cross diagrams of the electron deficient species.

(b) I	Below is s	ome information about the oxides of two Group 4 elements.	Examine
	Carbon	There are two common oxides of carbon. Carbon dioxide is an acidic oxide and carbon monoxide can be used as a reducing agent. Both of these are gases with very low boiling temperatures.	
-	Lead	There are two common oxides of lead. Lead(II) oxide is an amphoteric oxide and lead(IV) oxide can be used as an oxidising agent. Both of these are solids that exhibit a large degree of ionic character.	
		e differences between the oxides of carbon and lead, giving chemical equations their acid/base and redox properties. [6 QER]	
			10

9. The reversible reaction shown below was one of the first to be studied in detail in the gas and liquid phases and in solution.

 $N_2O_4 \rightleftharpoons 2NO_2$

(a) One study of the liquid mixture showed that it contained 0.714 % NO₂ by mass. Calculate how many moles of NO₂ would be present in 25.0 g of this liquid. Give your answer to an appropriate number of significant figures.

n(NO₂) = mol

Examiner

- (b) Both N_2O_4 and NO_2 are soluble in a range of solvents and the equilibrium constant, K_c , can be measured in these.
 - (i) Give the expression for the equilibrium constant, K_c , for this equilibrium, giving its unit if any. [2]

 $K_{\rm c}$ =

Unit =

Examiner only

(ii) The equilibrium constants for the N_2O_4/NO_2 equilibrium measured at room temperature in some different solvents are listed below.

Solvent	Equilibrium constant, <i>K</i> _c (Unit not shown)
CS ₂	17.8
CCI ₄	8.05
CHCI ₃	5.53
C₂H₅Br	4.79
C ₆ H ₆	2.03
C ₆ H ₅ CH ₃	1.69

I. Samples of 0.4000 mol of N_2O_4 are dissolved separately in 1 dm³ of each of these solvents at room temperature and the reactions allowed to reach equilibrium. In one solution the concentration of N_2O_4 present at equilibrium is 5.81×10^{-2} mol dm⁻³. Find the value of the equilibrium constant in this solution and hence identify the solvent. [3]

1410U301 11

Solvent

II. The Gibbs free energy change, ΔG , of this reaction is different in different solvents. Explain how the data shows this and state, with a reason, which solvent would have the most negative ΔG value for this reaction. [2]

																	Examine
(C)	Nitro	gen o	dioxic	de is i	used	l in the	e pro	duo	ction of	nitric ac	cid. It is	s produ	iced ir	n two s	tages.		only
	Stag	e 1	4N	H ₃ (g)	+ {	50 ₂ (g)) =	≥	4NO(g)	+ 6H	₂ O(g)	ΔH ^θ	= -90	0 kJ m	nol ^{−1}		
	Stag	e 2	2N	O(g)	+ (0 ₂ (g)	~	<u></u>	2NO ₂ (g	1)		ΔH ^θ	= -11	5 kJ m	ol ⁻¹		
	(i)	Exp exo	olain thern	why nic ec	the quilib	use o oria su	ofa (icha:	cata s si	alyst is tage 1.	essent	ial in i	ndustri	al pro	cesse	s invo	lving [2]	
	······																
	(ii)	of 5	atm.	Hec	obtai		nly a		stage 2 nall yield								
	••••••																
																	15
12			©	WJEC C	BAC Lt	d.		(14)	10U30-1)								

BLANK PAGE

13

PLEASE DO NOT WRITE ON THIS PAGE

Examiner 10. Aqua regia is an acidic liquid that can dissolve unreactive metals such as gold. It can be formed by bubbling hydrogen chloride gas through concentrated nitric acid. $HNO_3(I) + 3HCI(g) \longrightarrow NOCI(g) + CI_2(g) + 2H_2O(I)$ $\Delta H^{\theta} = -69 \text{ kJ mol}^{-1}$ Standard enthalpy change of Standard entropy, Substance formation, $\Delta_{\rm f} H^{\Theta}$ / kJ mol⁻¹ S^{θ} / J K⁻¹ mol⁻¹ -173 $HNO_3(I)$ 156 HCI(g) 187 NOCI(g) 53 264 0 223 $Cl_2(g)$ 70 $H_2O(I)$ -286 Show that this is a redox reaction. [1] (a) (b) State why the enthalpy change of formation of $Cl_2(g)$ is zero. [1] (C) Calculate the standard enthalpy change of formation of HCI(g). [2]

14

only

(d)	(i)	Calculate the free energy change, ΔG^{θ} , for this reaction at 25 °C. [3]	Exam onl
		ΔG^{θ} = kJ mol ⁻¹	
	(ii)	An alternative method of preparing aqua regia is to use concentrated hydrochloric acid with concentrated nitric acid. State, giving a reason, the effect of this on the value of ΔG^{θ} at 25 °C. [1]	e
(e)	(i)	The pH of a dilute solution of nitric acid is measured using a pH probe and has a value of 0.3. Calculate the concentration of this solution. [1]	
		Concentration = mol dm ⁻³	
	(ii)	An alternative way of measuring the concentration of the solution is by titration against a standard solution of sodium hydrogencarbonate of concentration $0.500 \text{ mol dm}^{-3}$.	
		State and explain which of these two methods will give the more precise value for the concentration. [2]	
	•••••		
			11

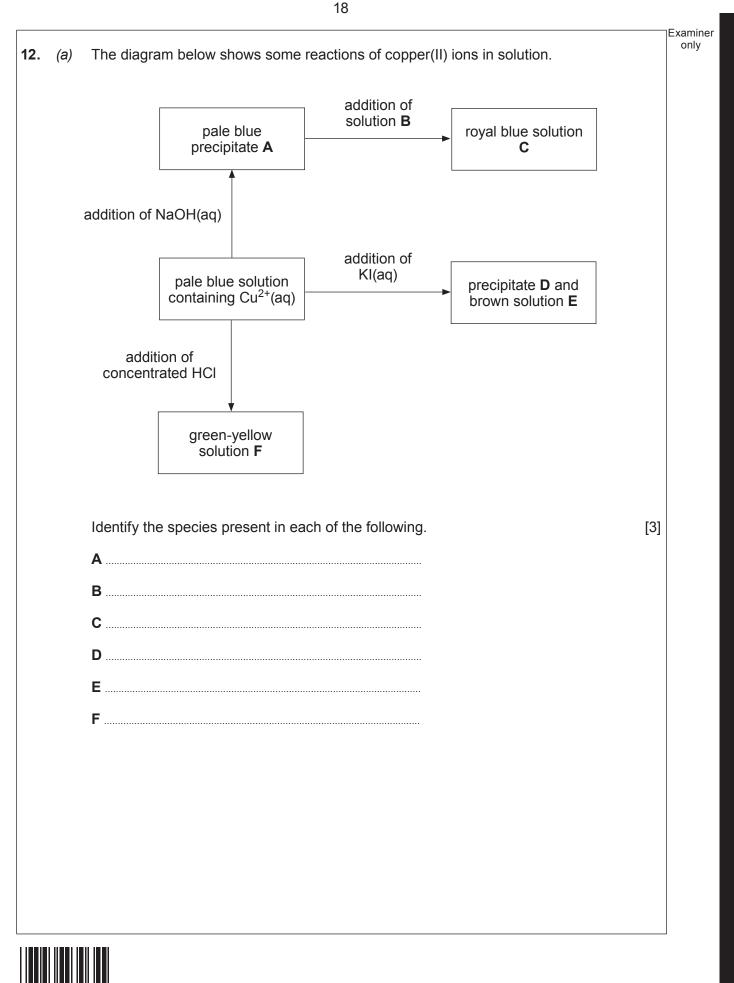
11. A hydrated compound $M_aAl_bZ_c.dH_2O$ contains an *s*-block metal ion, M, and a halide ion, Z. The following tests were undertaken.

Test	Result
Heating to constant mass	A 0.0200 mol sample lost 1.44 g when heated
Adding concentrated sulfuric acid	Observations included coloured fumes, an orange-brown solution, steamy fumes and a choking gas; there was no smell of rotten eggs
Adding excess silver nitrate to a solution	A 25.0 cm ³ sample of a solution of concentration 0.203 mol dm ⁻³ produced a precipitate with a dry mass of 3.814 g
Adding excess sodium hydroxide to a solution	A white precipitate formed which dissolved in excess sodium hydroxide
Elemental analysis	The hydrated compound was found to contain 1.63% by mass of <i>s</i> -block metal and 6.34% by mass of aluminium

(a) Calculate the value of *d* in the formula $M_aAl_bZ_c.dH_2O$.

d =

[2]


(b) (i) Identify the halide present in the compound, explaining fully all observations that led to your conclusion. [2]

only

Examiner

		Examiner
	(ii) Calculate the value of c in the formula $M_aAl_bZ_c.dH_2O.$ [2]	only
	с =	
(C)	State what the observations with sodium hydroxide indicate about the acidity/basicity of	
	the aluminium ions. [1]	
(d)	The M_r of the original hydrated compound is 425.62. Use all the information above to find	
	the formula of the hydrated compound. Explain your reasoning. [3]	
	Formula of the hydrated compound	
		10
17	© WJEC CBAC Ltd. (1410U30-1) Turn over.	

Examiner Vanadium exhibits the properties of a typical transition element, such as having variable (b) oxidation states and forming coloured complexes. Explain why transition elements have variable oxidation states. [1] Blue oxovanadium(IV) cations, VO²⁺, can be oxidised to yellow oxovanadium(V) ions, (C) VO_2^+ , by bromate(V) ions, BrO_3^- . Standard electrode potential, E^{θ} / V $VO_2^+ + 2H^+ + e^- \rightleftharpoons VO^{2+} + H_2O$ +1.00 $Br_2 + 2e^- \rightleftharpoons 2Br^-$ +1.09 $BrO_3^- + 6H^+ + 6e^- \rightleftharpoons Br^- + 3H_2O$ +1.44 Use these standard electrode potentials to identify the main bromine-containing product formed when excess bromate(V) ions are added to a solution containing VO²⁺ ions. Give reasons for your answer. [3]

only

The effect of the concentration of H^+ ions on the rate of the reaction in part (*c*) was studied using the same concentrations and volumes of all other reactants. The following data (d) were collected. Rate / mol dm⁻³ s⁻¹ pН 3.287×10^{-3} 1.0 1.308×10^{-3} 1.4 $5.193 imes 10^{-4}$ 1.8 2.2 2.071×10^{-4} Find the order of the reaction with respect to H⁺. You **must** show your working. [3] Order with respect to H⁺ =

Examiner only

(e)	The value of the rate constant, <i>k</i> , for this reaction at two temperatures is given below.				
	Temperature / K	Rate constant (unit not shown)			
	288	0.0761			

The activation energy for this reaction is $79.333 \text{ kJ mol}^{-1}$ and the Arrhenius equation is:

$$k = Ae^{-\left(\frac{E_a}{RT}\right)}$$

Calculate the value of the rate constant, *k*, at a temperature of 295 K.

300

k at 295K =

0.2873

[4]

		Examiner
(f)	VO^{2+} ions may also be oxidised to VO_2^+ ions using coloured Ce^{4+} , which is itself reduced to colourless Ce^{3+} . A titration using this reaction does not usually include an indicator and colorimetry is sometimes used.	only
	State why an indicator may not be useful in this reaction and explain how colorimetry can be used to find the end point of the titration. [3]	
		17
	END OF PAPER	

BLANK PAGE

23

PLEASE DO NOT WRITE ON THIS PAGE

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

