wjec cbac

GCE A LEVEL MARKING SCHEME

SUMMER 2019

A LEVEL (NEW) CHEMISTRY - UNIT 5 1410U50-1

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

A2 UNIT 5: PRACTICAL EXAMINATION

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.

The mark total should be entered onto the grid on the front cover.

Marking rules

All work should be seen to have been marked.

Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only ecf = error carried forward bod = benefit of doubt

A2 UNIT 5: PRACTICAL EXAMINATION

EXPERIMENTAL TASK

MARK SCHEME Test 1

	0L:II	Marking dataila			Marks a	vailable		
	Skill	Marking details	A01	Marks available AO2 AO3 Total Maths 2 2 2 2 1 1 4 4 4 1				
	Teacher-awarded marks	efficient use of solutions (1)						
Parts A & B		working safely (1)	2			2		2
	Hydrogen peroxide concentrations	appropriate range and intervals chosen total volume must be 14 cm ³		1				1
	Table	appropriate titles and units	1			-		
Part A Results	Reaction times	appropriate time range approximately 10-200 s (1)				4		
		time decreases as volume of hydrogen peroxide increases (1)			2			2
	Table	transfer of Part A result (1)	1					
		sensible precision in times recorded (1) do not accept 2 decimal places			1			1
Part B Results	Results	reaction time decreases as temperature increases (1)				4		
		decrease gets smaller as temperature increases (1)			2			2

Skill	Question	Marking details			Marks a	vailable		
SKII	Question	Marking details		AO2	AO3	Total	Maths	Prac
	(i)	three/four hydrogen peroxide concentrations calculated correctly (2)		2				
		award (1) if one/two hydrogen peroxide concentrations calculated correctly						
		rates calculated correctly (1) must be given to minimum 2 significant figures		1			3	3
Analysis	(ii)	appropriate scales on both axes (1)				7		
Part A		all points plotted correctly – tolerance $\pm \frac{1}{2}$ square (1)		2		'		
		line of best fit (1)			1		3	3
	(iii)	 award (1) for either of following first order because rate is directly proportional to hydrogen peroxide concentration 						
		first order because rate doubles when concentration doubles			1		1	

Skill	Question	Marking dataila			Marks a	available		
SKIII	Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
	(iv)	award (1) for each correct column						
		(award (1) for each correct row if this benefits candidate)		4			3	
	(v)	appropriate scale on y-axis (1)						
		three/four points plotted correctly – tolerance $\pm \frac{1}{2}$ square (2)		3				
		award (1) for any two points plotted correctly			1		4	
		line of best fit (1)						
	(vi)	line gradient calculated (1)						
		activation energy calculated in kJ mol ⁻¹ (1) – must be positive value		2			2	
Analysis Part B	(vii)	sensible equation – must have one peroxide and two iodide ions ONLY		1		13		
		ECF possible from incorrect order for hydrogen peroxide in part (iii)						
		rate equation - neutral answer						
	(viii)	times would be too short <u>at higher temperatures</u> with a solution of <u>higher concentration</u> (2)						
		award (1) for any of following						
		 gives an appropriate range of reaction times times would be too short with a solution of higher 			2			2
		concentration						
		 other concentrations would give too short a time at higher temperatures 						
		Total	4	16	10	30	16	16

Skill	Question	Marking details	Marks available							
SKII	Question			AO2	AO3	Total	Maths	Prac		
Analysis Part B	(vii)	sensible equation – must have one peroxide and two hydrogen ions ONLY ECF possible from incorrect order for hydrogen peroxide in part (iii) rate equation - neutral answer		1						
	(viii)	shorter times recorded (1) lower activation energy value calculated (1)			2	-		2		

MARK SCHEME ALTERNATIVES FOR Test 2

PRACTICAL METHODS AND ANALYSIS TASK

MARK SCHEME

	Ouestien	Marking dataila			Marks a	available		
	Question	Marking details	AO1 AO2 AO3 Total Ma				Maths	Prac
1	(a)	to prevent more than one nitro group being substituted	1			1		1
	(b)	 dissolve solid in <u>minimum</u> volume of <u>hot</u> ethanol (1) award (1) each for up to two of the following filter off any insoluble impurities whilst hot allow to cool (to crystallise solid) filter and dry 	3			3		3
	(c)	mass of methyl benzenecarboxylate = $1.08 \times 5.0 = 5.4$ (1)moles of methyl benzenecarboxylate = $\frac{5.4}{136.08} = 0.040$ (1)theoretical mass of methyl 3-nitrobenzenecarboxylate = $0.040 \times 181.07 = 7.24$ (1)percentage yield = $\frac{4.56}{7.24} \times 100 = 63 \%$ (1)		1 1 1 1 1		4	3	

0	tion	Marking dataila			Marks a	available		
Ques	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(d)	(i)	5-aminobenzene-1,3-dicarboxylic acid						
		award (1) each for up to two of the following						
		reagent: Na ₂ CO ₃ / NaHCO ₃ observation: fizzing (1)						
		reagent: HNO ₂ / 5-10°C followed by (alkaline) naphthalene-2-ol / phenol		2		2		2
		observation: orange/red coloured precipitate (1)						
		reagent: HNO ₂ / > 10°C observation: fizzing / bubbles / colourless gas (1)						
	(ii)	1-(4-hydroxy-3-nitrophenyl)ethanone						
		award (1) each for up to three of the following						
		reagent: FeCl ₃ (aq) observation: purple coloured solution						
		reagent: Br ₂ (aq) observation: white precipitate		3		3		3
		reagent: 2,4-dinitrophenylhydrazine observation: orange-yellow precipitate						
		reagent: I ₂ (aq) / NaOH(aq) or KI(aq) / NaClO(aq) observation: yellow precipitate						
		Question 1 total	4	9	0	13	3	9

vection	Marking dataila			Marks a	available		
lestion	Marking details	AO1 AO2 AO3 Total Maths					Prac
	outlines a suitable plan that would allow the identification of all four species (2)						
	outlines a suitable plan that would allow the identification of two/three species (1)			2			2
	award (1) each for up to three observations linked to the reagent(s) used and species identified			3			3
	award (1) each for up to three ionic equations linked to the reagent(s) used and species identified	3			8		
	carbonate ion addition of dilute H_2SO_4 - fizzing and $CO_3^{2-}(aq)$ identified $CO_3^{2-} + 2H^+ \rightarrow H_2O + CO_2$						
	iodide ion addition of AgNO ₃ (aq) - yellow precipitate and I ⁻ (aq) identified Ag ⁺ + I ⁻ \rightarrow AgI						
	lestion	outlines a suitable plan that would allow the identification of all four species (2)outlines a suitable plan that would allow the identification of two/three species (1)award (1) each for up to three observations linked to the reagent(s) used and species identifiedaward (1) each for up to three ionic equations linked to the reagent(s) used and species identifiedcarbonate ion addition of dilute H_2SO_4 - fizzing and $CO_3^{2-}(aq)$ identifiediodide ion addition of AgNO_3(aq) - yellow precipitate and I-(aq) identified	AO1outlines a suitable plan that would allow the identification of all four species (2)outlines a suitable plan that would allow the identification of two/three species (1)award (1) each for up to three observations linked to the reagent(s) used and species identifiedaward (1) each for up to three ionic equations linked to the reagent(s) used and species identifiedaward (1) each for up to three ionic equations linked to the reagent(s) used and species identifiedaward (1) each for up to three ionic equations linked to the reagent(s) used and species identifiedaddition of dilute H2SO4 - fizzing and CO32-(aq) identified $CO_3^{2-} + 2H^+ \rightarrow H_2O + CO_2$ iodide ion addition of AgNO3(aq) - yellow precipitate and I-(aq) identified	AO1AO2outlines a suitable plan that would allow the identification of all four species (2)outlines a suitable plan that would allow the identification of two/three species (1)award (1) each for up to three observations linked to the reagent(s) used and species identifiedaward (1) each for up to three ionic equations linked to the reagent(s) used and species identified3carbonate ion addition of dilute H_2SO_4 - fizzing and $CO_3^{2-}(aq)$ identified3iodide ion addition of AgNO_3(aq) - yellow precipitate and I ⁻ (aq) identified	Marking detailsAO1AO2AO3outlines a suitable plan that would allow the identification of all four species (2)outlines a suitable plan that would allow the identification of two/three species (1)2outlines a suitable plan that would allow the identification of two/three species (1)2award (1) each for up to three observations linked to the reagent(s) used and species identified3award (1) each for up to three ionic equations linked to the reagent(s) used and species identified3carbonate ion addition of dilute H2SO4 - fizzing and CO32-(aq) identified3iodide ion addition of AgNO3(aq) - yellow precipitate and I^(aq) identified	Marking detailsAO1AO2AO3Totaloutlines a suitable plan that would allow the identification of all four species (2)outlines a suitable plan that would allow the identification of two/three species (1)Image: Colspan="6">AO1AO2AO3Totaloutlines a suitable plan that would allow the identification of two/three species (1)outlines a suitable plan that would allow the identification of two/three species (1)Image: Colspan="6">2award (1) each for up to three observations linked to the reagent(s) used and species identifiedImage: Colspan="6">3Image: Colspan="6">3award (1) each for up to three ionic equations linked to the reagent(s) used and species identifiedImage: Colspan="6">3Image: Colspan="6">8carbonate ion addition of dilute H2SO4 - fizzing and CO32-(aq) identified CO32- + 2H+ \rightarrow H2O + CO2Image: Colspan="6">Image: Colspan="6">AO3Totaliodide ion addition of AgNO3(aq) - yellow precipitate and I-(aq) identifiedImage: Colspan="6">AO3Total	AO1AO2AO3TotalMathsoutlines a suitable plan that would allow the identification of all four species (2)outlines a suitable plan that would allow the identification of two/three species (1)222outlines a suitable plan that would allow the identification of two/three species (1)2233award (1) each for up to three observations linked to the reagent(s) used and species identified3338carbonate ion addition of dilute H2SO4 - fizzing and CO32-(aq) identified CO32- + 2H^+ \rightarrow H2O + CO2888

Question	Marking dataila			Marks a	available		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
	$\begin{array}{c} \textbf{chlorine} \\ \text{addition of aqueous iodide - yellow / brown coloured solution} \\ \text{formed and } Cl_2(aq) \text{ identified} \\ Cl_2 \ + \ 2l^- \ \rightarrow \ 2Cl^- \ + \ l_2 \end{array}$						
	or						
	addition of AgNO ₃ (aq) - white precipitate and Cl [_] (aq) identified						
	explanation of formation of Cl ⁻ (aq) required for both marks to be awarded e.g. Cl ₂ + H ₂ O \rightarrow HCl + HClO or Cl ₂ (aq) contains Cl ⁻ (aq)						
	$Ag^+ + Cl^- \rightarrow AgCl$						
	thiosulfate ion dropwise addition of I ₂ solution formed - yellow / brown solution of I ₂ becomes colourless and S ₂ O ₃ ²⁻ (aq) identified I ₂ + 2S ₂ O ₃ ²⁻ \rightarrow 2I ⁻ + S ₄ O ₆ ²⁻						
	or						
	addition of dilute sulfuric acid - off-white precipitate / cloudy white solution and $S_2O_3^{2-}(aq)$ identified $S_2O_3^{2-}$ + $2H^+ \rightarrow SO_2$ + S + H_2O						
	Question 2 total	3	0	5	8	0	5

	0	4100	Mayking dataila			Marks available			
	Ques	stion	Marking details	AO1 AO2 AO3 Total Math				Maths	Prac
3	(a)		to obtain concordant results	1			1		1
	(b)	(i)	13.10 cm ³ (V_1) used in first stage to react with Na ₂ CO ₃ and further 13.10 cm ³ required in second stage (to react with NaHCO ₃ produced) because it is 1:1 mol equivalent			1	1		1
		(ii)	moles HCl = $\frac{7.70}{1000} \times 0.196 = 0.00151 \text{ mol}$ (1) moles NaHCO ₃ in 25 cm ³ = 0.00151 mol moles NaHCO ₃ in 500 cm ³ = 0.0302 mol (1) mass NaHCO ₃ in the mixture = 0.0302 × 84.01 = 2.54 g percentage by mass NaHCO ₃ in the mixture = $\frac{2.54}{8.72} \times 100 = 29.1 \%$ (1)			1	3	2	

0	4i.e.m	Merking details			Marks a	vailable		
Ques	tion	Marking details	AO1 AO2 AO3 Total Maths					Prac
(C)	(i)	moles Na ₂ CO ₃ in 500 cm ³ of solution = $\frac{5.43}{106}$ = 0.0513 mol (1)						
		moles Na_2CO_3 in 25 cm ³ of solution = 0.00256 mol						
		moles $CO_2 = 0.00256$ mol						
		volume $CO_2 = 0.00256 \times 24.5 = 0.0628 \text{ dm}^3 = 62.8 \text{ cm}^3$ (1)		2		2	2	
	(ii)	volume CO_2 from NaHCO ₃ = (99.7 – 62.8) = 36.9 cm ³						
		ECF possible from part (i)					1	
		moles $CO_2 = \frac{36.9 \times 10^{-3}}{24.5} = 0.00151 \text{ mol}$ (1)						
		must show working						
		award (1) for either of following		2		2		
		• repeat of calculation from <i>(b)</i> (ii)						
		moles NaHCO ₃ in 500 cm ³ = 0.0302 mol						
		mass NaHCO ₃ in the mixture = $0.0302 \times 84.01 = 2.54$ g						
		percentage by mass NaHCO ₃ in the mixture = $\frac{2.54}{8.72}$ × 100 = 29.1 %						
		 0.00151 mol NaHCO₃ in 25 cm³ is consistent with value calculated in (b)(ii) so gives the same percentage / 29.1 % 						
		Question 3 total	1	4	4	9	5	2

A2 UNIT 5: PRACTICAL EXAMINATION

SUMMARY OF ASSESSMENT OBJECTIVES

	Question	A01	AO2	AO3	TOTAL MARK	MATHS	PRAC
Experimental Task	Total	4	16	10	30	16	16
	1	4	9	0	13	3	9
Practical Methods and Analysis Task	2	3	0	5	8	0	5
Analysis Task	3	1	4	4	9	5	2
		12	29	19	60	24	32

1410U50-1 WJEC GCE A Level Chemistry - Unit 5 MS S19/DM