шјес cbac

GCE A LEVEL MARKING SCHEME

SUMMER 2019

A LEVEL
CHEMISTRY - UNIT 3 1410U30-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

UNIT 3: PHYSICAL AND INORGANIC CHEMISTRY

MARK SCHEME

GENERAL INSTRUCTIONS

Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules
All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked.
Marking abbreviations
The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.
cao = correct answer only
ecf $=$ error carried forward
bod $=$ benefit of doubt
Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme

Section A

Section B

Question			Marking details	Marks available						
			AO1	AO2	AO3	Total	Maths	Prac		
9	(a)	(i)		$121 \mathrm{~kJ} \mathrm{~mol}^{-1}$		1		1		
		(ii)	$\begin{align*} & \Delta H=-(-728)-(242)-(1735)-(178)+(-795) \tag{1}\\ & \Delta H=-2222 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { (1) } \end{align*}$		2		2	1		
		(iii)	award (1) for any value in range $900-1600 \mathrm{~kJ} \mathrm{~mol}^{-1}$ award (1) for either of following - ionisation energies increase for successive ionisation energies (so value must be more than half the ionisation of the first two electrons) - second ionisation energy is greater than first ionisation energy		1	1	2			

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(b)	(i)		at minimum temperature $\Delta G=0$ so equation gives $\Delta S=\Delta H / T$ change units giving $T=473 \mathrm{~K}$ and $78000 \mathrm{~J} \mathrm{~mol}^{-1}$ (1) $\begin{equation*} \Delta S=165 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \text { (allow 164.9) } \tag{1} \end{equation*}$ ECF possible	1	1 1		3	3	
	(ii)	$\begin{aligned} & 0.0284 \mathrm{~mol}^{\text {of } \mathrm{CaCl}_{2}} \\ & 0.1138 \mathrm{~mol} \text { of water (1) } \\ & x=4 \end{aligned}$ ECF possible		3		3	2		
	(iii)	brick-red	1			1		1	
(c)		CaCl_{2} misty fumes (and white solid) (1) CaBr_{2} will produce orange fumes / solution as well as misty fumes (and white solid) (1) accept will also produce orange fumes if first mark awarded bromide is easier to oxidise than chloride (so can be oxidised by the sulfuric acid) (1)	3			3		1 1	
		Question 9 total	5	9	1	15	6	3	

Question			Marking details	Marks available						
			AO1	AO2	AO3	Total	Maths	Prac		
10	(a)	(i)		$\text { rate } \left.=k\left[\mathrm{CH}_{3}\right]\right]\left[\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}\right]$ award (1) for rate equation containing $\left.k\left[\mathrm{CH}_{3}\right]\right]$ award (1) for second order rate equation		1	1	2		
		(ii)	change E_{a} to $81100 \mathrm{~J} \mathrm{~mol}^{-1}$ (1) rearrange equation to $T=-\frac{E a}{\left(R \ln \frac{k}{A}\right)}$ $\begin{equation*} T=346 \mathrm{~K} \tag{1} \end{equation*}$	1		1 1	3	3		
	(b)	(i)	quenching is the sudden stopping / significant slowing of a chemical reaction in a sample (1) ensure sample composition does not change between taking sample and analysis OR during analysis (1)	1 1			2		2	
		(ii)	starch	1			1		1	
		(iii)	canary/bright yellow	1			1		1	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
(c)	(i)	1		catalyst in the same physical state as reaction	1			1		
		II	award (1) each for any two of following - transition metals have empty orbitals so can form bonds to reactant molecules / form complex - transition metals have variable oxidation states (so they can oxidise/reduce the reactants) - products are released and the metal returns to the original oxidation state	2			2			
	(ii)		$\begin{aligned} & {\left[\mathrm{H}^{+}\right]^{2}=K_{\mathrm{a}} \times[\text { acid }]} \\ & {\left[\mathrm{H}^{+}\right]=1.97 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}} \\ & \mathrm{pH}=2.7 \end{aligned}$		3		3	3		
			Question 10 total	8	4	3	15	6	4	

Question				Marking details	Marks available						
				A01	AO2	AO3	Total	Maths	Prac		
11	(a)	(i)			$\begin{align*} & \mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \\ & 2 \mathrm{MnO}_{4}^{-}+5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O} \tag{1} \end{align*}$	1	1		2		
		(ii)	I	$\begin{aligned} & 31.67 \mathrm{~cm}^{3} \\ & \text { accept } 31.65 \mathrm{~cm}^{3} \end{aligned}$		1		1	1	1	
			II	moles of manganate $(\mathrm{VII})=\frac{31.67 \times 0.0505}{1000}=1.599 \times 10^{-3} \mathrm{~mol}$ (1) ECF possible from mean volume moles of oxalic acid $=1.599 \times 10^{-3} \times 2.5=4.00 \times 10^{-3} \mathrm{~mol}$ (1) ECF possible from equation concentration of saturated solution $=\frac{4.00 \times 10^{-3}}{0.025} \times 10=1.60 \mathrm{~mol} \mathrm{dm}^{-3}$		3		3	2		

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
12	(a)	(i)		all four carbonates (1) acids react with metal carbonates to form carbon dioxide gas (1)	2			2		2
		(ii)	(hydrochloric acid would form) insoluble compound with Pb^{2+} (1) should use nitric acid / ethanoic acid (1)			2	2		2	
		(iii)	award (2) for all four correct award (1) for any two correct	2			2		2	
		(iv)	add excess sodium hydroxide (1) award (1) for either of following - magnesium hydroxide white precipitate remains but lead hydroxide precipitate dissolves (giving a colourless solution) - iron(II) hydroxide green precipitate remains but chromium hydroxide precipitate dissolves (giving a dark green solution) lead and chromium are amphoteric (iron and magnesium are not) (1)			3	3		3	

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(b)	(i)		$K_{c}=\frac{\left[\mathrm{CrO}_{4}^{2-}\right]^{2}\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}$		1		1		
	(ii)	$1 \mathrm{dm}^{3}$ contains 1000 g of water (1) $\begin{equation*} \frac{1000}{18.02}=55.5 \text { in } 1 \mathrm{dm}^{3} \tag{1} \end{equation*}$	1	1		2			
	(iii)	$\begin{align*} & {\left[\mathrm{H}^{+}\right]^{2}=\frac{\mathrm{Kc} \times\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right] \times\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CrO}_{4}^{2-}\right]^{2}}} \tag{1}\\ & {\left[\mathrm{H}^{+}\right]^{2}=2.356 \times 10^{-12} \text { or }\left[\mathrm{H}^{+}\right]=1.535 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}} \tag{1}\\ & \mathrm{pH}=5.81 \end{align*}$ student is incorrect as this solution is acidic (1)		1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	4	3		
	(iv)	if K_{c} increases the reaction is shifting to the right (1) if a reaction shifts to right when heated it must be endothermic (1)		1	1	2			
		Question 13 total	1	4	8	13	3	0	

UNIT 3: PHYSICAL AND INORGANIC CHEMISTRY

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	Total	Maths	Prac
Section A	4	6	0	10	0	1
9	5	9	1	15	6	3
10	8	4	3	15	6	4
11	1	8	3	12	3	4
12	4	3	8	15	4	9
13	1	4	8	13	3	0
Totals	23	34	23	80	22	21

