GCE AS MARKING SCHEME

SUMMER 2017

AS (NEW)
CHEMISTRY AS COMPONENT 1 B410U10-1

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

MARK SCHEME

GENERAL INSTRUCTIONS
Recording of marks
Examiners must mark in red ink
One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.
Extended response questions
A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules
All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

```
cao = correct answer only
ecf = error carried forward
bod \(=\) benefit of doubt
```

Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

Section B

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(d)			the brown solution (at the end) is bromine in both cases (1) any two of following for (1) each chlorine is a better oxidising agent (than bromine) chlorine takes electron from bromide (because) chorine is smaller bromine cannot react with chloride (1)	3	1		4		4
		Question 9 total	12	1	0	13	0	4	

Question				Marking details	Marks available						
				A01	AO2	AO3	Total	Maths	Prac		
10	(a)	(i)			energy needed to remove one electron from (every atom) in 1 mol of element in the gaseous state under standard conditions	2			2		
		(ii)	1	(for ionisation to take place) an electron must overcome the attraction between it and the nucleus (1) this increases for successive ionisations as each electron is being removed from an increasingly positive species / ratio of protons : electrons goes up (1)	2			2			
			II	\mathbf{X} is in Group II - some attempt at explanation required (1) big jump after removal of two electrons / new shell broken into after removal of two electrons (1)			2	2			

Question			Marking details	Marks available					
				A01	AO2	AO3	Total	Maths	Prac
(b)			Indicative content - for ionisation energy determination transitions to $\mathrm{n}=1$ must be used / Lyman series must be used (statement 1) - lines in visible spectrum comes from transitions involving $n=2$ / Balmer series - electrical energy excites electrons - electrons fall back and give off energy - lines formed since only some energies are allowed - lines are closer together at higher energies - since energy levels get closer - convergence limit is when electron removed / ionisation takes place - use $E=h f$	5		1	6		
			5-6 marks Recognition that Lyman series required, clear understanding of electron trans The candidate constructs a relevant, coherent and logically structured account sustained and substantiated line of reasoning is evident and scientific conven 3-4 marks Basic understanding of electron transition and convergence of lines/energy leven The candidate constructs a coherent account including many of the key elem in the linking of key points and use of scientific conventions and vocabulary is 1-2 marks Some knowledge of electron transition between energy levels The candidate attempts to link at least two relevant points from the indicative inclusion of irrelevant materials. There is some evidence of appropriate use 0 marks The candidate does not make any attempt or give an answer worthy of credit	n and including ns and s ts of th enerally aterial. scientific	verge all key cabula indicativ ound. heren onven	of lin ments are us conte is lim s and	nergy he in accur Some by om cabul	vels tive con y throug asoning ion and	A ut. evident

Question	Marking details	Marks available					
		A01	AO2	AO3	Total	Maths	Prac
(ii)	$\begin{align*} & \Delta E=6.63 \times 10^{-34} \times 3.28 \times 10^{15}\left(=2.175 \times 10^{-18} \mathrm{~J}\right) \tag{1}\\ & 6.63 \times 10^{-34} \times 3.28 \times 10^{15} \times 6.02 \times 10^{23} \quad(1) \\ & 1310 \quad \text { (1) answer must be given to } 3 \text { sig figs } \end{align*}$		3		3	3	
	Question 10 total	9	3	3	15	3	0

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
11	(a)	(i)		$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$	1			1		
		(ii)	0.30		1		1	1		
		(iii)	any three of following for (1) each - ethanoic acid is a weak acid and hydrochloric acid is strong - ethanoic acid has a lower concentration of H^{+}ions - ethanoic acid is partially dissociated - $\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$	3			3			
	(b)	(i)	all full outer shells (1) one electron pair clearly from O ignore charge		2		2			
		(ii)	co-ordinate bond / dative covalent bond	1			1			
		(iii)	106° to 108° (1) 3 bond pairs and 1 lone pair (1) lone pair-bond pair repulsion greater than bond pair-bond pair repulsion (1) allow ecf if 4 bond pairs in (i)		3		3			

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(c)	(i)		if a change in conditions is applied to a system in equilibrium (1) the equilibrium moves in the direction that tends to minimise the effect of the change (1)	2			2		
	(ii)	solution turns yellow (1) added OH^{-}ions remove H^{+}and equilibrium moves to LHS (to form chromate(VI)) (1)			2	2		2	
		Question 11 total	7	6	2	15	1	2	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
12	(a)	(i)		mass water $=0.274(\mathrm{~g})$ mass anhydrous barium chloride $=1.645(\mathrm{~g})$ (1) both required correct M_{r} values for water and barium chloride $\Rightarrow 18$ and 208 (1) both required $\begin{align*} & \frac{1.645}{208}: \frac{0.274}{18} \Rightarrow 0.0079: 0.0152 \\ & 1: 1.92 \text { therefore } x=2 \tag{1} \end{align*}$		3	1	4	3	4
		(ii)	to avoid loss by spitting / fumes / loss of solid do not accept 'to avoid loss of water'	1			1		1	
		(iii)	use a greater mass of hydrated solid (1) increases percentage accuracy (1) ensure that all water has been lost (1) heat to constant mass (1) neutral answer: 'heat for longer or hotter'			4	4		4	
		(iv)	x is a whole number so small variation in answer is irrelevant - some comment required			1	1		1	

Question		Marking details		Marks available							
		A01	AO2	AO3	Total	Maths	Prac				
(b)	(i)			carbonate $/ \mathrm{CO}_{3}{ }^{2-}$ do not accept sulfate / $\mathrm{SO}_{4}{ }^{2-}$				1	1		1
	(ii)	any metal ion apart from Group I			1		1		1		
	(iii)	$\mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \rightarrow \mathrm{BaCO}_{3}(\mathrm{~s})$ ecf possible e.g. if sulfate given in (i)			1		1				
			Question 12 total	1	5	7	13	3	12		

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(f)			maximum error in two readings $=0.1$ (1) $\begin{equation*} 0.1 / 23.00 \times 100=0.435 \tag{1} \end{equation*}$ award (1) if calculation based on one reading i.e. 0.05 error		2		2	1	2
(g)	(i)	$\mathrm{n}=\frac{\mathrm{pV}}{\mathrm{RT}}$ conversion of volume to m^{3} and temperature to K $\begin{equation*} =\frac{1.01 \times 10^{5} \times 1.31 \times 10^{-3}}{8.31 \times 298}=0.0534 \tag{1} \end{equation*}$		3		3	3		
	(ii)	conclusion is confirmed because 4.59 g of magnesite is 0.055 mol 1 mol magnesite produces $1 \mathrm{~mol} \mathrm{CO}_{2}$ amount of CO_{2} formed corresponds to 0.053 mol ecf possible			1	1			
		Question 13 total	0	10	4	14	8	8	

COMPONENT 1: THE LANGUAGE OF CHEMISTRY, STRUCTURE OF MATTER AND SIMPLE REACTIONS SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	Total	Maths	Prac
Section A	1	9	0	10	1	1
9	12	1	0	13	0	4
10	9	3	3	15	3	0
11	7	6	2	15	1	2
12	1	5	7	13	3	12
13	0	10	4	14	8	8
Totals	30	34	16	80	16	27

Eduqas AS Chemistry Component 1 MS Summer 2017

