GCE A LEVEL MARKING SCHEME

SUMMER 2017

A LEVEL (NEW)
CHEMISTRY - COMPONENT 1 A410U10-1

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

COMPONENT 1: PHYSICAL AND INORGANIC CHEMISTRY

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink
One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.
Extended response questions
A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules
All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer
Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

| cao | $=\quad$ correct answer only |
| :--- | :--- | :--- |
| ecf | $=\quad$ error carried forward |

bod $=$ benefit of doubt
Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

6				carbon is more stable as +4 oxidation state (so will be readily oxidised to this oxidation state) (1) $\begin{equation*} \text { e.g. } \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2} \tag{1} \end{equation*}$	1	1		2		
7				temperature 243 K and pressure $1.01 \times 10^{5} \mathrm{~Pa}$ (1) $\begin{align*} & p V=n R T \text { gives } V=n R T \div p \\ & 0.267 \times 8.314 \times 243 \div 1.01 \times 10^{5}=5.34 \times 10^{-3} \mathrm{~m}^{3} \tag{1}\\ & \text { ecf possible } \end{align*}$		2		2	2	
8				for a reaction to be feasible overall entropy must increase (1) when sodium chloride dissolves ions have greater entropy which overcomes the endothermic change (1) OR for a reaction to be feasible Gibbs free energy must be negative (1) in this case ΔS will be large as ions in solution have a greater entropy and counteract the ΔH (1)	1		1	2		
9				pH in range 2.5-6.5 (must give reason for mark) (1) ammonium ion will release H^{+}ions in solution making solution acidic (can show this by equilibrium) (1)		1	1	2		
				Section A total	5	8	2	15	4	2

Section B

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
10	(a)	(i)		$4.39 \text { \% (2) }$ award (1) if answer given to different number of significant figures		2		2	2	
		(ii)	either route acceptable - must include at least two advantages of and one disadvantage of chosen route; award (1) for each advantages of steam reforming - produces more H_{2} - higher atom economy / less waste - does not produce CO_{2} - waste product can be recycled in water gas shift reaction disadvantages - uses non-renewable resource / fossil fuel as starting material - highly endothermic so will need a lot of energy input advantages of water gas shift reaction - exothermic so will not need much energy input / energy generated can be used elsewhere - starting material is waste product of another reaction - does not produce CO which is toxic disadvantages - produces CO_{2} which leads to global warming - produces less H_{2} than reforming - lower atom economy that reforming		2	1	3			
	(b)		syngas contains H_{2} already which is a product of the WGSR (1) H_{2} would shift the equilibrium of the WGSR to the left so less conversion will occur (1)		2		2			

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
(c)	(i)	1		catalysts are in a different physical state / phase to the gas reactants	1			1		
		II	gases can be adsorbed onto catalyst (1) this brings the gas reagents together OR the transition metal can oxidise or reduce the gas molecules making them more reactive (1)	2			2			
	(ii)	1	there are the same numbers of gas molecules on both sides of the reaction so pressure does not affect the position of equilibrium		1		1			
		II	higher pressure: increased rate / less time (1) lower pressure: reduced energy costs / reduced equipment costs (to ensure high pressures can operate safely) (1)	2			2			
	(iii)	1	the reaction is exothermic (1) higher temperature shifts equilibrium to left so more reactants remain		2		2			
		II	$K_{\mathrm{c}}=\frac{\left[C O_{2}\right]\left[\mathrm{H}_{2}\right]}{[C O]\left[H_{2} \mathrm{O}\right]}$		1		1			
		III	$1 \% \mathrm{CO}$ and $1 \% \mathrm{H}_{2} \mathrm{O}$ in equilibrium mixture (1) 49% of each product (1) $K_{\mathrm{c}}=49 \times 49 \div(1 \times 1)=2401$		3		3	3		
			Question 10 total	5	13	1	19	5	0	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
11	(a)			$\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}$		1		1		
	(b)		- $\mathrm{Na}_{2} \mathrm{O}, \mathrm{MgO}, \mathrm{Al}_{2} \mathrm{O}_{3}$ have giant ionic structures so has strong electrostatic forces between ions (1) - SiO_{2} has a giant covalent structure / macromolecule so needs to break strong covalent bonds to melt (1) - $\mathrm{P}_{4} \mathrm{O}_{10}, \mathrm{SO}_{2}, \mathrm{Cl}_{2} \mathrm{O}$ have covalent molecules and the forces between molecules are weak (1)	3			3			
	(c)	(i)	aluminium oxide is ionic and aluminium chloride is covalent (1) difference in electronegativity between Al and O is greater than that between Al and Cl (1)	1	1		2			
		(ii)	aluminium oxide contains charged ions and aluminium chloride does not (1) ions can flow and carry a charge when molten (1)	2			2			

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(d)	(i)		phosphorus has d-orbitals in its outer shell / available but nitrogen does not (1) this allows phosphorus to expand its octet / have more than 8 electrons in its outer shell (1)	2			2		
	(ii)	oxidation state in sodium peroxide is -1 (1) no change in oxidation states so not redox / oxidation state of oxygen in the $\mathrm{H}_{2} \mathrm{O}_{2}$ is -1		2		2			
	(iii)	inert pair effect (1) becomes more significant down the group so lead can form +2 but silicon cannot (1)	2			2			
(e)		PCl_{3} has three bonding pairs and one lone pair (1) these arrange themselves as far apart as possible to minimise repulsion / lone pairs repel more than bonded pairs (1) pyramidal shape or diagram (1)	1	1 1		3			
(f)		appropriate diagram / Born-Haber cycle (1) $\begin{align*} & \Delta_{\mathrm{f}} H^{\ominus}=150+(2 \times 121)+738+1451+(2 \times-349)-2493 \tag{1}\\ & -610\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{align*}$		1 1	1	3	3		
		Question 11 total	11	8	1	20	3	0	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
12	(a)			alpha radiation unable to penetrate vial walls / absorbed by solvent	1			1		
	(b)		high energy electromagnetic waves	1			1			
	(c)		causes mutations / damages DNA or biological molecules	1			1			
	(d)		germanium 74 both needed		1		1			
	(e)	(i)	$\begin{align*} & \text { number of atoms per minute }=2.1 \times 10^{5} \times 60=1.26 \times 10^{7} \tag{1}\\ & \text { number of moles per minute }=1.26 \times 10^{7} \div N_{A}=2.09 \times 10^{-17} \tag{1}\\ & \text { mass per minute }=2.09 \times 10^{-17} \times 131=2.74 \times 10^{-15} \mathrm{~g} \tag{1}\\ & \text { ecf possible throughout } \tag{1} \end{align*}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	3	3		
		(ii)	caesium-137 (must give reason) it has the second highest radioactivity behind chlorine-38 however it has the longest half-life, so there must be a much greater amount of caesium-137 to produce this amount of radioactivity (1)			2	2	1		
	(f)		award (1) for any two of following - after two half-lives some of the longest lived isotope is still present - the decay of a radioisotope may produce another radioactive nucleus which may have a longer half-life - there may be other radioactive nuclei not detected so far or not listed with longer half-lives			2	2			
			Question 12 total	3	3	5	11	4	0	

Question			Marking details					Marks available										
			A01	AO2	AO3	Total	Maths	Prac										
13	(a)	(i)																Prac 3
			volume A/ cm^{3}	22.35	22.00	22.05	22.00											
			volume $\mathbf{B} / \mathrm{cm}^{3}$	11.20	10.65	10.55	10.45											
			all values calculated and give to 4 sig figs (1) 22.02 (1) 10.55 (1) ecf possible throughout									1						
									3		3	1						
		(ii)	any two for (1) each - repeat readings in first titration are closer together / concordant / less scatter - smaller percentage error in measurements in first titration as values are larger - two colour changes measured / steps to find volume B but only one to find volume \mathbf{A}							2	2		2					
		(iii)	$\begin{align*} & \text { moles } \mathrm{HCl}=10.55 \times 0.105 / 1000=1.11 \times 10^{-3} \\ & \text { moles } \mathrm{Na}_{2} \mathrm{CO}_{3}=5.54 \times 10^{-4} \tag{1}\\ & \text { mass } \mathrm{Na}_{2} \mathrm{CO}_{3} \text { in original sample }=0.587 \mathrm{~g} \\ & \text { ecf from part (i) and throughout } \end{align*}$						1	1	3	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	3					

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(c)	(i)		$\begin{align*} & {\left[\mathrm{H}^{+}\right]^{2}=1.76 \times 10^{-5} \times 0.1=1.76 \times 10^{-6}} \\ & {\left[\mathrm{H}^{+}\right]=1.33 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}} \tag{1}\\ & \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=2.9 \tag{1} \end{align*}$		2		2	2	
	(ii)	use pH probe to measure pH as acid is added (1) plot results to find equivalence point / no sharp increase in pH			2	2		2	
		Question 13 total	2	7	9	18	6	16	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
14	(a)	(i)		allows ions to flow without the solutions mixing	1			1		1
		(ii)	award (1) for any two of following up to maximum of six for (3) $\mathrm{H}_{2}(\mathrm{~g}) / 1 \mathrm{~atm}$ pressure $/ \mathrm{H}^{+}(\mathrm{aq}) / 1 \mathrm{~mol} \mathrm{dm}^{-3}$ concentration / $298 \mathrm{~K} /$ platinum electrode / appropriate diagram	3			3		3	
		(iii)	lithium metal would react with the solution			1	1		1	
	(b)	(i)	Li / Li (s)		1		1			
		(ii)	$\begin{aligned} & \mathrm{EMF}=1.09-(-0.76) \\ & =1.85 \mathrm{~V} \text { (ignore sign) } \end{aligned}$		2		2		2	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
15	(a)			$\begin{aligned} & \text { number of electrons }=7.5 \times 10^{22} \\ & \text { number of moles of electrons }=0.1246 \\ & \text { mass of lithium }=0.1246 \times 6.94=0.86 \end{aligned}$ answer must be given to 2 sig figs ecf possible throughout		3		3	3	
	(b)	(i)	heating to constant mass ensures all the water has been removed / sample is completely dry	1			1		1	
		(ii)	$\begin{align*} & \text { number of moles of } \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}=8.57 \times 10^{-3} \\ & \text { moles of solid is approximately } 0.017088 \\ & \text { so } \mathrm{c}=1 \tag{1} \end{align*}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	3	3	3	
		(iii)	$13.2 \mu \mathrm{~g} \mathrm{dm}^{-3} \mathrm{Li}=1.90 \mu \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{a}=1$ as the concentration of the solid and the Li is the same		1	1	2	1	1	
		(iv)	M_{r} of unknown metal in overall M_{r} approximately $=158-6.94-95=56.06$ therefore metal must be Fe overall formula is LiFePO_{4}			2	2			
			Question 15 total	1	6	4	11	7	5	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
16	(a)	(i)		concentration of reactants changes over this time (1) so rate changes significantly over this time (1)		$\begin{aligned} & 1 \\ & 1 \end{aligned}$		2		2
		(ii)	values measured at lower temperatures are very small (1) percentage errors in these will therefore be larger than in other measurements (1)			$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	1	2	
	(b)	(i)	second order		1		1	1		
		(ii)	rate data tells us about the rate determining / slowest step of the reaction mechanism (1) second order shows there are two molecules / the number of molecules involved (in the rate determining step) (1) order with respect to each reactant tells how many of each reactant molecule are present in the rate determining step (1)	1		1	3			
		(iii)	$\mathrm{k}=A e^{-E_{a} / R T}$	1			1	1		
		(iv)	$\begin{align*} & E_{\mathrm{a}}=-\mathrm{RT} \times \log _{\mathrm{e}}(\mathrm{k} / A) \\ & E_{\mathrm{a}}=-8.314 \times 303 \times \log _{\mathrm{e}}\left(1.752 \times 10^{-2} / 1.49 \times 10^{11}\right) \tag{1}\\ & E_{\mathrm{a}}=75.0 \mathrm{~kJ} \mathrm{~mol} \\ & l^{-1}(\text { conversion into } \mathrm{kJ} \text { from J }) \end{align*}$ ecf possible throughout			3	3	3		
			Question 16 total	3	3	6	12	6	4	

COMPONENT 1: PHYSICAL AND INORGANIC CHEMISTRY
SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	Total	Maths	Prac
Section A	5	8	2	15	4	2
10	5	13	1	19	5	0
11	11	8	1	20	3	0
12	3	3	5	11	4	0
13	2	7	9	18	6	16
14	6	5	3	14	0	9
15	1	6	4	11	7	5
16	3	3	6	12	6	4
Totals	36	53	31	120	35	36

