GCE AS MARKING SCHEME

SUMMER 2018

AS
CHEMISTRY - COMPONENT 1 B410U10-1

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

COMPONENT 1: THE LANGUAGE OF CHEMISTRY, STRUCTURE OF MATTER AND SIMPLE REACTIONS
 MARK SCHEME
 general instructions

Recording of marks

Examiners must mark in red ink.
One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.
Extended response questions
A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer
Crossed out responses not replaced should be marked.
Marking abbreviations
The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.
cao = correct answer only
ecf = error carried forward
bod $=$ benefit of doubt
Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

Section B

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
8.	(a)			ice is less dense / molecules are further apart (1) ice is a hydrogen bonded lattice (1) (partially) broken down in water (1)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1		3		
	(b)		```two isotopes - chlorine-35 and chlorine-37 in 3:1 ratio (1) lines at 70,72 and 74 (1) ratio 9:6:1 (1)```	3			3			
	(c)		red in HCl because it has very low $\mathrm{pH} / \mathrm{pH} 1$ and orange in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$ because it has a higher $\mathrm{pH} / \mathrm{pH} 2 / 3$ HCl is a strong acid and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$ is weak (1) comparison of degree of dissociation and H^{+}concentration (1)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		1	3		1	
			Question 8 total	7	1	1	9	0	1	

Question			Marking details	Marks available						
			AO1	AO2	AO3	Total	Maths	Prac		
10.	(a)	(i)		add (dilute nitric) acid		1		1		1
		(ii)	any soluble sulfate e.g. sodium sulfate, magnesium sulfate	1			1		1	
		(iii)	$\begin{align*} & \mathrm{Pb}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq}) \rightarrow \mathrm{PbSO}_{4}(\mathrm{~s}) \\ & \text { all species correct }(1) \quad \text { state symbols } \tag{1} \end{align*}$	1	1		2			
		(iv)	filter (1) washed to remove soluble impurities (1) dry to constant mass to ensure all water removed (1)	3			3		3	
	(b)	(i)	$\begin{align*} & {\text { moles } \mathrm{PbSO}_{4}=3.56 / 303=0.0117 \mathrm{~mol}}_{\text {mass } \mathrm{Pb}=0.0117 \times 207=2.43 \mathrm{~g}}^{\text {percentage }=2.43 / 4.52 \times 100=54 \%} \tag{1} \end{align*}$		3		3	2		
		(ii)	0.281\% - accept 0.28\%		1		1	1	1	
	(c)		measure the volume of carbon dioxide produced when acid added / measure the loss in mass when heated (1) if other carbonate present will be more moles of carbonate present (than calculated from this volume/mass) (1)			2	2			
			Question 10 total	5	6	2	13	3	6	

Question			Marking details	Marks available						
			AO1	AO2	AO3	Total	Maths	Prac		
11.	(a)			dilute by factor of 40 (1) use pipette and volumetric flask (1) suitable size of volumetric flask and pipette	1		1 1	3	1	3
	(b)		$\begin{align*} & \text { moles } \mathrm{HCl}=\frac{19.6 \times 0.05}{1000}=9.8 \times 10^{-4} \tag{1}\\ & \text { moles } \mathrm{Ca}(\mathrm{OH})_{2} \text { in } 25.0 \mathrm{~cm}^{3}=\frac{9.8 \times 10^{-4}}{2}=4.9 \times 10^{-4} \tag{1}\\ & \text { conc } \mathrm{Ca}(\mathrm{OH})_{2}=4.9 \times 10^{-4} \times 40=0.0196 \mathrm{~mol} \mathrm{dm}^{-3} \tag{1}\\ & =0.019 \times 74=1.45 \mathrm{~g} \mathrm{dm}^{-3} \tag{1} \end{align*}$		4		4	3		
	(c)		white precipitate / gone cloudy (1) CO_{2} absorbed and CaCO_{3} formed / water from saturated solution evaporates and $\mathrm{Ca}(\mathrm{OH})_{2}$ precipitates (1)	2			2		2	
	(d)		greater volume of acid needed because $\mathrm{Ba}(\mathrm{OH})_{2}$ is more soluble than $\mathrm{Ca}(\mathrm{OH})_{2}$			1	1			
	(e)		flame test (1) calcium (brick) red and barium (apple) green OR add aqueous solution of named soluble sulfate (1) heavier / more white precipitate for Ba^{2+} (1)	2			2		2	
			Question 11 total	5	4	3	12	4	7	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
12.	(a)			a reaction in which products react to form reactants (as well as reactants reacting to form products)	1			1		
	(b)		both lines starting as curves and then being horizontal at same time as original (1) line \mathbf{A} starting at 2.5 and finishing at 0.5 line \mathbf{B} starting at 0 and finishing at 2.0			3	3	2		
	(c)	(i)	$\begin{equation*} K_{\mathrm{c}}=\frac{\left[\mathrm { CH } _ { 3 } \mathrm { COOC } _ { 2 } \mathrm { CO } _ { 5 } \left[\mathrm{H}_{2} \mathrm{Ol}\right.\right.}{\left[\mathrm{CH}_{3} \mathrm{COOH}_{2}\right]\left[\mathrm{C}_{2} \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{OH}\right]} \tag{1} \end{equation*}$ no units (must follow K_{c})		2		2	1		
		(ii)	$\Delta \mathrm{H} \text { approx }=0$ explanation in terms of le Chatelier's principle		1	1	2			
	(d)		$\begin{align*} & \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \quad(1) \tag{1}\\ & {\left[\mathrm{H}^{+}\right]=3.98 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}} \tag{1} \end{align*}$	1	1		2	2		

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(e)			moles of $\mathrm{CH}_{3} \mathrm{COOH}=2.94 / 60=0.049$ and moles $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=0.045$ (1) moles ethanol is limiting factor (1) theoretical yield $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}=0.045 \times 88=3.96 \mathrm{~g}$ percentage yield $=2.73 / 3.96 \times 100=68.9 \% \quad$ (1)	1	3			2	
		Question 12 total	3	7	4	14	7	0	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
13.	(a)			absorb carbon dioxide in alkali (1) absorb water in (conc) sulfuric acid / suitable anhydrous substance / condense water (1)			2	2		2
	(b)		$\begin{align*} & \text { mass } \mathrm{C}=12.57 \times \frac{12}{44}=3.43 \\ & \text { mass } H=7.74 \times \frac{2}{18.02}=0.86 \tag{1}\\ & \text { percentage } \mathrm{C}=3.43 / 6.57 \times 100=52.2 \% \\ & \text { percentage } \mathrm{H}=0.86 / 6.57 \times 100=13.1 \% \tag{1}\\ & \text { percentage } \mathrm{O}=100-(52.2+13.1)=34.7 \tag{1} \end{align*}$		3		3	2		
	(c)		$\begin{align*} & \mathrm{C}: \mathrm{H}: \mathrm{O}=\frac{52.2}{12}: \frac{13.1}{1.01}: \frac{34.7}{16}=4.35: 13.1: 2.17 \tag{1}\\ & \mathrm{C}: \mathrm{H}: \mathrm{O} \Rightarrow 2: 6: 1 \\ & \text { empirical formula is } \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \end{align*}$		2		2	1		

COMPONENT 1: THE LANGUAGE OF CHEMISTRY, STRUCTURE OF MATTER AND SIMPLE REACTIONS SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	Total	Maths	Prac
Section A	4	6	0	10	2	0
8.	7	1	1	9	0	1
9.	1	6	3	10	0	0
10.	5	6	2	13	3	6
11.	5	4	3	12	4	7
12.	3	7	4	14	7	0
13.	2	7	3	12	6	2
Totals	27	37	16	80	22	16

B410U10-1 AS Chemistry - Component 1 MS Summer 2018

