GCE A LEVEL MARKING SCHEME

SUMMER 2018

A LEVEL
CHEMISTRY - COMPONENT 3 A410U30-1

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

COMPONENT 3: CHEMISTRY IN PRACTICE

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.
One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked.
Marking abbreviations
The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.
$\begin{array}{ll}\text { cao } & =\text { correct answer only } \\ \text { ecf } & =\quad \text { error carried forward }\end{array}$
bod $=$ benefit of doubt
Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
1			Indicative content Reaction 1 - add ammonia solution to the pale blue copper(II) sulfate solution - $\quad\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ - royal blue coloured solution formed - $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ ions - $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(\mathrm{aq})+4 \mathrm{NH}_{3}(\mathrm{aq}) \rightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ Reaction 2 - add concentrated hydrochloric acid to the pale blue copper(II) sulfate solution - yellow-green solution formed - $\left[\mathrm{CuCl}_{4}\right]^{2-}$ ions - $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(\mathrm{aq})+4 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow\left[\mathrm{CuCl}_{4}\right]^{2-}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ credit any correct variations on these reactions e.g. dropwise addition of ammonia solution to copper(II) sulfate solution giving pale blue precipitate of copper(II) hydroxide	2	4		6		4

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
2	(a)			 methylpropan-2-ol (1)		2		2		
	(b)		award (1) for reagents - aqueous iodine and aqueous sodium hydroxide - aqueous potassium iodide and aqueous sodium chlorate(I) award (1) for observation - yellow crystalline solid formed	2			2		2	
	(c)		$\begin{align*} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl} / \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br} / \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{I} \tag{1}\\ & \left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOH} \tag{1} \end{align*}$		2		2			

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(d)			$\begin{align*} & \text { moles of nitrogen gas }=0.269 \mathrm{~mol} \\ & \text { mass of } 1 \text {-aminobutane used }=19.7 \mathrm{~g} \tag{1}\\ & \text { volume of } 1 \text {-aminobutane }=26.6 \mathrm{~cm}^{3} \end{align*}$		3		3	2	
(e)	(i)	conical flask connected to a gas syringe (1) constant temperature water bath $\left(20^{\circ} \mathrm{C}\right)$	2			2		2	
	(ii)	points plotted correctly ($\pm 1 / 2$ square) (1) curve of best fit drawn (1)	2			2	2		
	(iii)	$\begin{align*} & \mathrm{n}(\text { benzenediazonium chloride })=0.0055 \mathrm{~mol} \\ & \text { using } p V=n R T \\ & \mathrm{~V}=\frac{0.0055 \times 8.31 \times 293}{1.01 \times 10^{5}} \quad \text { (1) } \\ & \mathrm{V}=133 \mathrm{~cm}^{3} \quad(1) \tag{1}\\ & \text { using Charles' Law } \\ & V \text { at } 293 \mathrm{~K}=\frac{0.135 \times 293}{298} \tag{1}\\ & V \text { at } 293 \mathrm{~K}=133 \mathrm{~cm}^{3} \quad \text { (1) } \tag{1} \end{align*}$		3		3	3		

				A01	AO2	AO3	Total	Maths	Prac
	(iv)	1	$\begin{aligned} & \text { tangent drawn at } \mathrm{t}=0 \quad \text { (1) } \\ & \text { gradient }=8.75 \mathrm{~cm}^{3} \mathrm{~min}^{-1} \quad \text { (1) } \\ & \text { (accept value in range } 8.5 \text { to } 11 \text {) } \\ & \text { initial rate }=8.75 \times 10^{-3} \mathrm{dm}^{3} \mathrm{~min}^{-1} \quad(1) \\ & \text { (accept value in range } 8.5 \times 10^{-3} \text { to } 11 \times 10^{-3} \text {) } \end{aligned}$		1 1	1	3	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
		II	$\begin{equation*} k=\frac{8.75 \times 10^{-3}}{0.110}=7.95 \times 10^{-2} \tag{1} \end{equation*}$ ecf possible from part I unit of rate constant $=\frac{\mathrm{dm}^{3} \mathrm{~min}^{-1}}{\mathrm{~mol} \mathrm{dm}^{-3}}=\mathrm{mol}^{-1} \mathrm{dm}^{6} \mathrm{~min}^{-1}$		2		2	2	
			Question 2 total	6	14	1	21	11	4

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
4	(a)	(i)		distance travelled by alanine $=2.2$ (1) $\begin{equation*} R_{\mathrm{f}}=0.275 / 0.28 \tag{1} \end{equation*}$ ecf possible for incorrect distance travelled by alanine		2		2	1	2
		(ii)	spot 1 corresponds to both glycine and serine (as they have the same R_{f} value)			1	1		1	
		(iii)	award (1) for each of following spot drawn above spot 1 at 3.3 cm spot drawn above spot 1 at 3.7 cm spot drawn above spot 2 at 4.6 cm spot drawn above spot 3 at 5.9 cm			4	4		4	
	(b)		correct structure drawn e.g. accept any unambiguous formula for correct structure		1		1			
			Question 4 total	0	3	5	8	1	7	

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
	(ii)		$\begin{align*} & n(\mathrm{NaOH})=0.00047 \mathrm{~mol} \\ & n(\mathbf{X}) \text { in } 25 \mathrm{~cm}^{3} \text { of aqueous layer }=0.00047 \mathrm{~mol} \\ & n(\mathbf{X}) \text { in } 200 \mathrm{~cm}^{3} \text { of aqueous layer }=0.00376 \mathrm{~mol} \tag{1}\\ & \text { mass of } \mathbf{X} \text { in } 200 \mathrm{~cm}^{3} \text { of aqueous layer }=0.436 \mathrm{~g} \\ & \text { mass of } \mathbf{X} \text { in } 200 \mathrm{~cm}^{3} \text { of organic layer }=14.564 \mathrm{~g} \\ & K=\frac{0.1256}{0.00376}=33.4 \\ & \text { ecf possible throughout } \end{align*}$				5	4	
(b)		for a $23.50 \mathrm{~cm}^{3}$ titre percentage error $=\frac{2 \times 0.05 \times 100}{23.50}=0.43 \%$		1		1		1	

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(c)	(i)		$\begin{align*} & \mathrm{n}(\mathbf{X}) \text { in } 200 \mathrm{~cm}^{3} \text { aqueous solution }=0.00376 \mathrm{~mol} \\ & \mathrm{c}=\frac{0.00376}{0.200}=0.0188 \mathrm{~mol} \mathrm{dm}^{-3} \tag{1}\\ & \text { ecf possible from part (a)(ii) } \\ & {\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(1.32 \times 10^{-5}\right) \times 0.0188=4.98 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}} \tag{1}\\ & \mathrm{pH}=-\log 4.98 \times 10^{-4}=3.30 \tag{1} \end{align*}$		3		3	3	
	(ii)	x-axis scale of 0 to 50 and labelled as volume of NaOH solution $\left(\mathrm{cm}^{3}\right)$ y-axis scale of 0 to 14 and labelled as pH (1) starting pH of 3.30 [allow ecf from part (i)] and volume of NaOH used at endpoint $23.50 \mathrm{~cm}^{3}$ and vertical portion of curve at $23.50 \mathrm{~cm}^{3}$ correct sketch of the curve - vertical portion and correct shape in the buffer region and pH rising to ~ 12 and extending beyond $45 \mathrm{~cm}^{3}$ of NaOH (1) pH at equivalence point >7 any two of following labelled (1) buffer region, half-equivalence point, equivalence point, end point	1		4	5			
		Question 5 total	1	9	5	15	7	2	

COMPONENT 3: CHEMISTRY IN PRACTICE

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	Total	Maths	Prac
1	2	4	0	6	0	4
2	6	14	1	21	11	4
3	1	1	8	10	0	8
4	0	3	5	8	1	7
5	1	9	5	15	7	2
Totals	10	31	19	60	19	25

A410U30-1 EDUQAS A LEVEL CHEMISTRY - COMPONENT 3 SUMMER 2018 MS

