GCE A LEVEL MARKING SCHEME

SUMMER 2018

A LEVEL
CHEMISTRY - COMPONENT 1 A410U10-1

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

COMPONENT 1: PHYSICAL AND INORGANIC CHEMISTRY

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink
One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.
Extended response questions
A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules
All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

```
cao = correct answer only
ecf = error carried forward
bod \(=\) benefit of doubt
```

Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
1.	(a)			$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$ accept arrows in boxes	1			1		
	(b)		outermost electron in sulfur is paired in same orbital and outer electron in phosphorus is unpaired (can allow second part from arrows in boxes diagram in (a)) (1) electron-electron repulsion makes it easier to remove outer electron for sulfur (1)	2			2			
2.				1			1			
3.			solution where the pH remains constant when small amounts of acid or base are added	1			1		1	
4.			 in a covalent bond the shared pair has one electron from each atom but in a coordinate bond both electrons come from the same atom (1)	2			2			

Section B

Question				Marking details	Marks available						
				A01	AO2	AO3	Total	Maths	Prac		
9.	(a)	(i)			645	1			1		
		(ii)		$\begin{aligned} & 77+376+121-364-645 \\ & -435 \end{aligned}$		2		2	1		
		(iii)	1	$\begin{align*} & \Delta_{\text {sol }} H^{\ominus}[\mathrm{CsCl}]=\Delta_{\text {hyd }} H^{\ominus}\left[\mathrm{Cs}^{+}\right]+\Delta_{\text {hyd }} H^{\ominus}\left[\mathrm{Cl}^{-}\right]-\Delta_{\text {lattorm }} H^{\ominus}[\mathrm{CsCl}] \\ & \Delta_{\text {hyd }} H^{\ominus}\left[\mathrm{Cs}^{+}\right]=18-(-364)+(-645)=-263 \tag{1} \end{align*}$		2		2	1		
			II	entropy must be considered (1) overall entropy must increase for a reaction to occur (1) entropy increase as ions move from solid to solution outweighs entropy reduction of environment due to endothermic reaction (1) OR entropy must be considered (1) Gibbs free energy combines entropy and enthalpy and must be negative (1) in this case entropy change is very positive as ions move from solid to solution (1)	1	2		3			

Question		Marking details		Marks available					
				A01	AO2	AO3	Total	Maths	Prac
(b)		$\begin{align*} & \frac{376}{6.02 \times 20^{23}}=6.25 \times 10^{-22} \mathrm{~kJ} \tag{1}\\ & 6.25 \times 10^{-19} \mathrm{~J} \tag{1}\\ & f=\frac{E}{h}=942 \mathrm{THz} \tag{1} \end{align*}$			3		3	3	
			Question 9 total	2	9	0	11	5	0

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
10.	(a)	(i)		Indicative content 1. Increasing pressure shifts equilibrium to side with fewer gas molecules 2. In this case high pressure shifts equilibrium to form more ethanal / more products 3. High pressure increases rate of reaction 4. High pressure should be used as it gives high yield and faster rate 5. High pressures are more expensive to run / risk of explosion / safety limits pressures that can be used 6. High temperatures give a faster reaction 7. Higher temperatures shift exothermic equilibria in the endothermic direction 8. This shifts to the left / away from products / gives lower yield 9. Temperature chosen must be compromise between yield and rate of reaction 10. Catalyst increases rate without changing amount of product 11. Catalyst allows a lower temperature to be used giving a better yield		2	4	6		

5-6 marks

The candidate includes eight relevant points, including suggesting appropriate temperature and pressure (points 4 and 9) and point 11 The candidate constructs a relevant, coherent and logically structured account including all key elements of the indicative content. A sustained and substantiated line of reasoning is evident and scientific conventions and vocabulary is used accurately throughout.

3-4 marks

The candidate includes five relevant points and backs up their choice of either temperature or pressure using the ideas of Le Chatelier The candidate constructs a coherent account including many of the key elements of the indicative content. Some reasoning is evident in the linking of key points and use of scientific conventions and vocabulary is generally sound.

1-2 marks

Candidate includes four relevant points
The candidate attempts to link at least two relevant points from the indicative material. Coherence is limited by omission and/or inclusion of irrelevant materials. There is some evidence of appropriate use of scientific conventions and vocabulary.

0 marks

The candidate does not make any attempt or give an answer worthy of credit.

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
	(ii)		M_{r} values of 28.04 (or 28) and 44.04 (or 44) (1) 100% yield would be $\frac{2 \times 10^{6}}{28.04} \times 44.04=3.14 \times 10^{6} \mathrm{~g}$ $\begin{equation*} 95 \% \text { yield }=2.98 \times 10^{6} \mathrm{~g}=2.98 \times 10^{3} \mathrm{~kg} \tag{1} \end{equation*}$		3		3	3	
(b)	(i)	$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	1			1			
	(ii)	d-orbitals are full in Cu^{+}(1) so electrons can't move / no d-d transitions	2			2			
	(iii)	solution turns (from pale blue) to royal blue (1) different ligands cause different splitting so different frequencies of light are absorbed	1 1	1		4		2	
		Question 10 total	6	6	4	16	3	2	

Question			Marking details	Marks available						
			AO1	AO2	AO3	Total	Maths	Prac		
11.	(a)			could not be lead(II) iodide as this is yellow do not award if more than one compound named	1			1		1
	(b)	(i)	sodium carbonate and potassium carbonate are both soluble and none of the remaining tests would distinguish between them			1	1		1	
		(ii)	hydrochloric acid would not form a soluble salt with lead(II) carbonate hydrochloric acid would introduce chloride ions which will react with silver nitrate in later tests (1) nitric acid should be used (1)		1	$\begin{align*} & 1 \tag{1}\\ & 1 \end{align*}$	3		3	
		(iii)	potassium gives lilac flame sodium gives yellow / orange flame calcium gives brick red / orange red flame award (2) for all three correct award (1) for any two correct award max (1) if any reference to white or other colour for magnesium ignore any reference to white or greyish-white for lead	2			2		2	

Question	Marking details	Marks available					
		A01	AO2	AO3	Total	Maths	Prac
(iv)	lead(II) nitrate and magnesium sulfate could not be distinguished (1) add potassium iodide (1) yellow precipitate with Pb^{2+} (1) no change with Mg^{2+} (1) OR add NaOH to excess (1) white precipitate with Mg^{2+} that remains with excess (1) white precipitate with Pb^{2+} that dissolves in excess (1) if any other pair of compounds given - credit possible for test if not already used			4	4		4
	Question 11 total	3	1	7	11	0	11

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
12.	(a)			9 protons and 9 neutrons	1			1		
	(b)		positron / β^{+}emission must be occurring (1) gamma emission may be occurring (1)		2		2			
	(c)	(i)	$\left[\mathrm{CH}^{18} \mathrm{~F}_{2} \mathrm{OH}\right]^{+} /\left[\mathrm{CH}_{2}{ }^{18} \mathrm{~F}_{2} \mathrm{O}\right]^{+}$		1		1			
		(ii)	```relative heights of peaks containing }\mp@subsup{}{}{18}\mp@subsup{\textrm{F}}{2}{}\mathrm{ and }\mp@subsup{}{}{19}\mp@subsup{\textrm{F}}{2}{}\mathrm{ is 1:1 (1) must be 1:1 ratio (1) two half-lives to decay from 4:1 to 1:1 (1) time taken = 220 minutes (1) ecf possible from incorrect number of half-lives```			4	4			

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(d)	(i)		six points prior to jump and then two points (1) gradual increase within each shell (1)		2		2		
	(ii)	two shells so element in second period (1) six ionisations before first jump (six outer electrons) so Group 6 do not accept references to s / p block		2		2			
		Question 12 total	1	7	4	12	0	0	

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(c)			the evidence supports this as the percentages of copper are the same in both methods (within experimental error) - allow reverse argument if values do not match (1) could confirm this by analysis (or any named analytical method) of first solution for percentage by mass of zinc / undertake qualitative analysis to exclude the presence of other metals in alloy / appropriate alternative method (1)			2	2		2
(d)	(i)	$\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{1.2}$ $\left[\mathrm{HNO}_{3}\right]=15.8 \mathrm{~mol} \mathrm{dm}^{-3}$		2		2	2		
	(ii)	$\begin{align*} & {\left[\mathrm{H}^{+}\right]=\frac{10^{-14}}{2}=5 \times 10^{-15}} \tag{1}\\ & \mathrm{pH}=-\log \left(5 \times 10^{-15}\right)=14.3 \tag{1} \end{align*}$		2		2	2		
		Question 13 total	0	8	6	14	12	7	

Question				Marking details	Marks available						
				A01	AO2	AO3	Total	Maths	Prac		
14	(a)				chlorine is a gas, bromine is a liquid and iodine is a solid (1) forces between molecules are van der Waals (1) van der Waals' forces increase in strength down the group as the number of electrons increases (1)	3			3		
	(b)	(i)		```[Ca }\mp@subsup{}{}{2+ 6.7 mol dm}\mp@subsup{}{}{-3}\mathrm{ for anhydrous and }5.0\mp@subsup{\textrm{mol dm}}{}{-3}\mathrm{ for hydrated (1) student is incorrect (must give valid reason)None```		1	1	2	1		
		(ii)		can dissolve as they can form hydrogen bonds with water molecules these are formed with the - OH groups of the alcohol (1) the - OH forms a larger proportion of the butanol than the octanol / a larger part of the octanol cannot form hydrogen bonds / same amount of hydrogen bonding but more van der Waals forces between molecules of octan-1-ol (1)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1		3			
	(c)	(i)		temperature of 298 K and 1 atm pressure	1			1			
		(ii)	1	$20 \% \quad(1)$ line goes flat showing all AIBN reacted so only dioxane left to absorb		2		2		2	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
15.	(a)			ethyne cannot form hydrogen bonds with water molecules	1			1		
	(b)	(i)	$\begin{align*} & \text { units changed to } 293 \mathrm{~K} \text { and } 135000 \mathrm{~Pa} \\ & \text { moles in } 1 \mathrm{~cm}^{3}=\frac{\left(135000 \times 1 \times 10^{-6}\right)}{(8.31 \times 293)}=5.54 \times 10^{-5} \tag{1}\\ & \text { mass of } 1 \mathrm{~cm}^{3}=5.54 \times 10^{-5} \times 26.02 \tag{1}\\ & \text { density }=1.44 \times 10^{-3} \mathrm{~g} \mathrm{~cm}^{-3} \tag{1} \end{align*}$		4		4	4		
		(ii)	$\begin{equation*} \text { density at } 20^{\circ} \mathrm{C}=1.27 \times 10^{-3} \times \frac{273}{298}=1.18 \times 10^{-3} \mathrm{~g} \mathrm{~cm}^{-3} \tag{1} \end{equation*}$ the student is incorrect as ethyne is heavier than air at the same temperature (1) ecf possible			2	2			
	(c)	(i)	enthalpy change of combustion should be for 1 mol of hydrocarbon not 2 mol (1) water should be in its standard state (of liquid not gas)		2		2			

Question	Marking details	Marks available					
		A01	AO2	AO3	Total	Maths	Prac
(ii)	award (2) for Hess's cycle or correctly structured calculation e.g. $\Delta H=4\left[\Delta_{\mathrm{f}} H\left(\mathrm{CO}_{2}\right)\right]+2\left[\Delta_{\mathrm{f}} H\left(\mathrm{H}_{2} \mathrm{O}\right)\right]+2\left[\Delta_{\text {vap }} H\left(\mathrm{H}_{2} \mathrm{O}\right)\right]-2\left[\Delta_{\mathrm{f}} H\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)\right]$ award (1) if either vaporisation not included, value for one $\mathrm{C}_{2} \mathrm{H}_{2}$ calculated or one change has an incorrect number $\begin{equation*} \Delta H=-2432 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{1} \end{equation*}$ this is the better method as bond energies use average values rather than values for these specific compounds (1) if bond energies method selected award (2) max $\begin{equation*} \text { reactants }=5802 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { and products }=7796 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{1} \end{equation*}$ $\begin{equation*} \Delta H=-1994 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{1} \end{equation*}$ if both methods used correctly award (3) max if no statement of which is the better method		4		4	2	

COMPONENT 1: PHYSICAL AND INORGANIC CHEMISTRY
SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	Total	Maths	Prac
Section A	13	2	0	15	0	4
9	2	9	0	11	5	0
10	6	6	4	16	3	2
11	3	1	7	11	0	11
12	1	7	4	12	0	0
13	0	8	6	14	12	7
14	10	8	5	23	6	5
15	1	11	6	18	6	5
Totals	36	52	32	120	32	34

