GCE AS MARKING SCHEME

SUMMER 2019

AS
CHEMISTRY - COMPONENT 2
B410U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

COMPONENT 2: ENERGY, RATE AND CHEMISTRY OF CARBON COMPOUNDS SUMMER 2019 MARK SCHEME
 GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.
One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer

Crossed out responses not replaced should be marked.
Marking abbreviations
The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao	$=$	correct answer only
ecf	$=$	error carried forward
bod	$=$	benefit of doubt

Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
1				award (1) for either E-isomer or Z-isomer		1		1		
2				1			1			
3	(a)		award (1) for either of following - an electron deficient species - a species that can accept a pair of electrons	1			1			
	(b)		award (1) for any electrophile e.g. H^{+} Br^{+}(accept partial charges) Na^{+} $\mathrm{C}^{\text {o }}$	1			1			

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
4	(a)					1		1		
	(b)		award (1) for either of following -OH group attached to carbon joined to two other carbon atoms -OH group attached to carbon joined to one hydrogen atom	1			1			
5	(a)		the total enthalpy change for a reaction is independent of the route taken from the reactants to the products	1			1			
	(b)		$20.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$		1		1	1		
6			carbon monoxide and water	1			1			
7			$2 \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{MgO} \rightarrow\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Mg}+\mathrm{H}_{2} \mathrm{O}$		1		1			
			Section A total	6	4	0	10	1	0	

Section B

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(b)	(i)		radical substitution accept photochlorination	1			1		
	(ii)	during the reaction ethyl radicals form (1) two of these radicals can combine to give butane (1)	2			2			
(c)	(i)	award (1) for each product 1-bromo-3-methylbutane 2-bromo-3-methylbutane accept correct structures award (1) if Br in correct place but error in structures		2		2			
	(ii)	2-bromo-3-methylbutane since intermediate carbocation formed is more stable		1		1			
(d)		CFCs are very stable and they do not break down easily in the lower atmosphere since the $\mathrm{C}-\mathrm{F}$ and $\mathrm{C}-\mathrm{Cl}$ bonds are strong / energy from uv light not strong enough to break $\mathrm{C}-\mathrm{F}$ or $\mathrm{C}-\mathrm{Cl}$ bond (1) in the upper atmosphere higher energy uv light breaks the $\mathrm{C}-\mathrm{Cl}$ bond forming chlorine radicals (1)		1	1	2			
		Question 8 total	9	4	1	14	0	0	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
9	(a)			student not correct since a temperature change would occur on adding the catalyst which had nothing to do with the reaction			1	1		1
	(b)		$\begin{align*} & \text { moles } \mathrm{H}_{2} \mathrm{O}_{2}=8.82 \times 10^{-2} \\ & \text { concentration } \mathrm{H}_{2} \mathrm{O}_{2}=8.82 \times 10^{-1} \tag{1} \end{align*}$		2		2	2		
	(c)		$\begin{align*} & q=m c \Delta T=3553 \mathrm{~J} \tag{1}\\ & \mathrm{n}=4.41 \times 10^{-2} \mathrm{~mol} \tag{1} \end{align*}$ $\begin{equation*} \Delta H=-\frac{q}{n} \tag{1} \end{equation*}$ $\Delta H=-80.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (1) must be to 3 sig figs	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	4	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	4	
	(d)		mass of solution is used in expression to calculate amount of heat transferred			1	1		1	
	(e)		award (1) for either of following - no more bubbles - colour of catalyst returns to amber		1		1		1	

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(f)			credit any two responses award (1) for each improvement and (1) for justification plot a cooling curve - extrapolation gives the temperature that would have been reached if the reaction occurred instantly use a more precise/accurate thermometer - reduces percentage error in fairly small temperature rise place lid on the cup - prevents heat loss to the environment			4	4		4
(g)		no change since catalysts do not effect enthalpy change	1			1		1	
		Question 9 total	2	5	7	14	5	12	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
10	(a)	(i)				1 1		1		
		(ii)	```place acid in flask and add sodium dichromate(VI) until it has dissolved (1) (cool mixture) and add ethanol dropwise (shaking between additions) (1) set up distillation apparatus (1) heat gently until liquid boils over (1)```	4			4		4	
		(iii)	add sodium (hydrogen)carbonate (1) no effervescence (1) do not accept references to pH	2			2		2	
	(b)		award (1) for either of following - ethanol has peak at $50-90$ ppm, ethanal does not - ethanal has peak at 190-220 ppm, ethanol does not both contain two peaks / one other peak below 40 ppm (1)		2		2			

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(c)	(i)		$\begin{align*} & \text { bonds broken } \\ & (5 \times 412)+(1 \times 348)+(1 \times 360)+(1 \times 463)+(3 \times 496) \\ & \text { bonds formed } \\ & (4 \times 743)+(6 \times 463) \tag{1}\\ & \text { enthalpy change }=4719-5750=-1031 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{1} \end{align*}$		3		3	2	
	(ii)	award (1) for either of following - large quantities of land needed to grow crops for biofuels - growing crops for biofuels needs large quantities of water (and fertilisers)	1			1			
(d)		(due to the -OH group) ethanol forms hydrogen bonds with water (so it is soluble) (1) in hexan-1-ol since the carbon chain is longer the effect of the -OH group is now small (so it is insoluble) (1)	2			2			
		Question 10 total	9	6	0	15	2	6	

Question		Marking details	Marks available						
		AO1	AO2	AO3	Total	Maths	Prac		
(f)	f)		decrease the temperature of the acid (1) reactants collide with less energy (1) fewer molecules have the required activation energy (1) accept alternative based on surface area roll strip into a lump (1) lower surface area for reaction to occur (1) lower chance / frequency of successful collisions (1)	3			3		
(g)	9)	$\xrightarrow{\text { ? }}$	2			2			
		Question 12 total	6	6	5	17	6	6	

COMPONENT 2: ENERGY, RATE AND CHEMISTRY OF CARBON COMPOUNDS SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	Total	Maths	Prac
Section A	6	4	0	10	1	0
8	9	4	1	14	0	0
9	2	5	7	14	5	12
10	9	6	0	15	2	6
11	0	7	3	10	4	1
12	6	6	5	17	6	6
Totals	32	32	16	80	18	25

