

ADVANCED SUBSIDIARY (AS) General Certificate of Education 2017

Chemistry

Assessment Unit AS 3 assessing Module 3: Basic

Module 3: Basic Practical Chemistry

Practical Booklet B (Theory)

[SCH32] FRIDAY 9 JUNE, AFTERNOON

TIME

1 hour 15 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

You must answer the questions in the spaces provided.

Do not write outside the boxed area on each page or on blank pages.

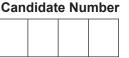
Complete in black ink only. **Do not write with a gel pen.**

Answer **all six** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 55.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.


A Periodic Table of Elements, containing some data, is included with this question paper.

10925

16SCH3201

Centre Number				

SCH32

1	A sample of hydrated sodium carbonate, Na ₂ CO ₃ .xH ₂ O, was analysed by titration to determine the amount of water of crystallisation. 2.79g of the hydrated sodium carbonate were dissolved in 250.0 cm ³ of deionised water. 25.0 cm ³ of this solution were titrated with 0.10 mol dm ⁻³ sulfuric acid. The mean titre was 22.5 cm ³ .			
	The following reaction occurred:			
	$Na_2CO_3 + H_2SO_4 \rightarrow Na_2SO_4 + H_2O + CO_2$			
	(a)	(i)	Describe how the 250.0 cm ³ solution of sodium carbonate could be prepared.	
				[4]
		(ii)	Name a suitable indicator for this titration, and state the colour change at the end point.	
			Indicator	
			Colour change from to	[3]
10925				

16SCH3202

L

(b)	Use the following headings to calculate the value of x in the hydrated sodium
	carbonate.

Number of moles of sulfuric acid added

Number of moles of sodium carbonate in 25.0 cm³ of solution

Number of moles of sodium carbonate in 250.0 cm³ of solution

Mass of sodium carbonate in 250.0 cm³ of solution

Mass of water in the hydrated sodium carbonate

Moles of water in the hydrated sodium carbonate

Value of x

[Turn over

[5]

16SCH3203

(c) An alternative method to determine the amount of water of crystallisation in hydrated salts is to heat the hydrated compound in a crucible until it reaches constant mass.

The following masses were obtained using this method.

mass of crucible	11.60 g
mass of crucible + hydrated copper(II) sulfate before heating	16.60 g
mass of crucible + contents after heating for ten minutes	14.93g
mass of crucible + contents after heating for fifteen minutes	14.93g

(i) Draw a labelled diagram of the apparatus used to heat a sample of hydrated copper(II) sulfate.

[3]

10925

16SCH3204

(ii)	Outline one safety precaution required when the weighings are taken after
	heating.

____ [1]

(iii) Calculate the percentage, by mass, of water in the hydrated copper(II) sulfate.

_____ [2]

[Turn over

16SCH3205

DD 19 Learnin-Œ O. ÐÐ Œ Ð Œ ÐÐ Œ ÐÐ Œ ÐÐ Œ ÐÐ O. ÐÐ Œ Ð Œ ÐÐ Œ ÐÐ Œ ÐÐ Œ Ð O. ÐÐ Œ Ð Œ ÐÐ Œ ÐÐ O: ÐÐ Œ ÐÐ Œ Ð O. Ð Œ ÐÐ Œ

2 Propanone may be prepared by the following method:

A solution containing 15g of sodium dichromate(VI) in 100 cm^3 of dilute sulfuric acid is added dropwise to 11.5 cm^3 of propan-2-ol (density 0.79 g cm^{-3}). This mixture is refluxed for 20 minutes. The apparatus is then rearranged for distillation, collecting the distillate below 60 °C. The distillate is then dried using anhydrous sodium sulfate. A yield of 7.0 g is obtained.

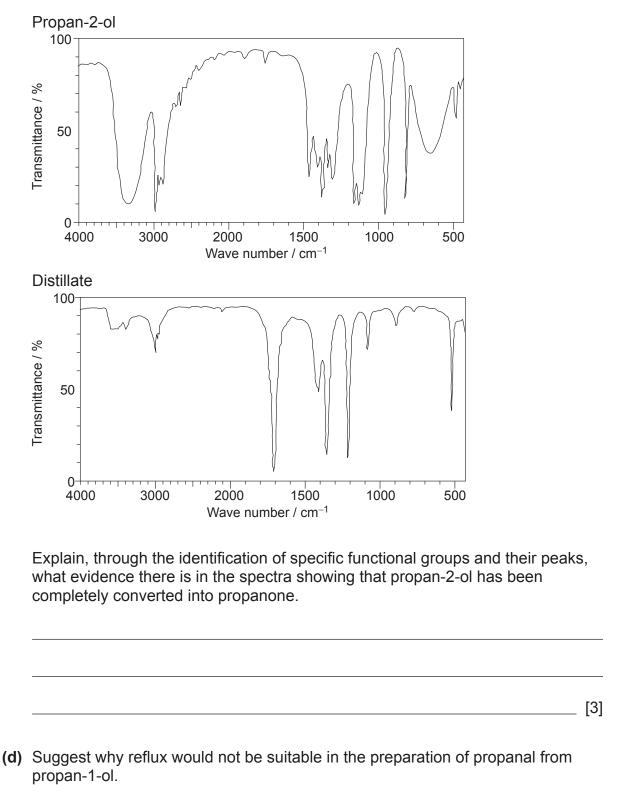
(a) (i) Define the term **reflux**.

(ii) Describe, giving practical details, how the distillate is dried and how the sodium sulfate is removed.

(b) Calculate the percentage yield of propanone.

_____ [3]

_____ [1]


_____ [3]

10925

16SCH3206

- Rewarding Learning COCE Rewarding Transmittance / % Jaming , Learning Reward^{b-} CC Rewarding I Transmittance / % Rewarding L COS Rewarding L COS Rewarding L COS Rewarding I Rewarding Rewarding Learning Rewarding <u>Cosming</u> Rewarding Rewarding 10925
 - (c) The infrared spectra for propan-2-ol and the distillate are shown below:

_ [1]

[Turn over

3	The enth apparate	nalpy of combustion of propan-2-ol, C ₃ H ₈ O, can be determined using tl us shown below.	ne
		thermometer	
		copper can	
		100 g water gauze	
		spirit burner	
		and wick propan-2-ol	
	(a) (i)	Define the term enthalpy of combustion .	
			[2]
	(ii)	Write an equation for the complete combustion of propan-2-ol.	[2]
	(iii)	Why is a copper can used?	
			[1]
	(iv)	Why should the water be stirred throughout the experiment?	
			[1]
10925			

16SCH3208

(b) (i) When completely burned, 0.60g of propan-2-ol caused 100g of water to increase in temperature by 36°C. Calculate the enthalpy of combustion of propan-2-ol. The heat capacity of water is 4.2 J g⁻¹ K⁻¹.

(ii) A data book gives the enthalpy of combustion as -2006 kJ mol⁻¹. Suggest a reason why this value differs from the value found in (b)(i).

_____ [1]

_____ [3]

[Turn over

4 An experiment was carried out to test for polarity in the molecules of two liquids, A and B. burette burette containing containing liquid A liquid **B** liquid A liquid **B** charged charged polythene polythene rod rod (a) Explain the difference in the results observed. [2] (b) Complete the diagram to show how a molecule of water is attracted to the charged rod shown below. [1] 10925

16SCH3210

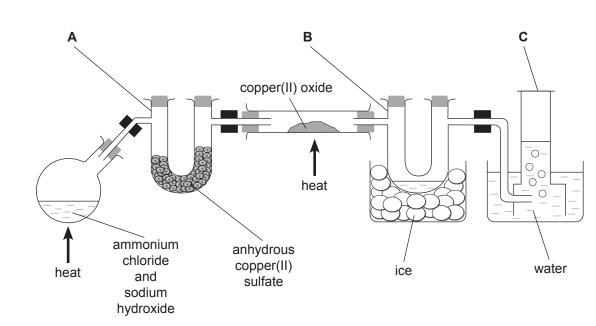
y Learning

ng ng Learning E

BLANK PAGE

DO NOT WRITE ON THIS PAGE

(Questions continue overleaf)


10925

[Turn over

16SCH3211

- DD 19 Learning Œ ÐÐ Œ ÐÐ Œ ÐÐ Œ ÐÐ Œ ÐÐ O: ÐÐ O. ÐÐ Œ ÐÐ Œ ÐÐ Œ Ð Œ Ð O: Ð Œ ÐÐ Œ Ð Œ ÐÐ Œ ÐÐ Œ ÐÐ Œ Ð Œ ÐÐ O: ÐÐ Œ DD Œ
- **5** The apparatus below was set up to investigate the reduction of copper(II) oxide by ammonia gas.

- (a) Suggest an equation for the reaction between ammonium chloride and sodium hydroxide to form ammonia.
- [1]
 (b) Name the piece of apparatus labelled A.
 [1]
 (c) State the purpose of the anhydrous copper(II) sulfate in A.
 [1]
 (d) What will be observed in A during the experiment?
 [1]

- (e) The solution that collects in **B** turns Universal Indicator blue. Explain what causes this change.
 - _____ [2]
- (f) The gas collected in **C** is a product of the reduction of the copper(II) oxide. Suggest the name of this gas.

____ [1]

10925

[Turn over

16SCH3213

<u>act - 1</u>	ium carbonate and state the expected results.	
calc	ium ion	
	onate ion	[3
carb	onate ion	
		[3
	THIS IS THE END OF THE QUESTION PAPER	

16SCH3214

BLANK PAGE

DO NOT WRITE ON THIS PAGE

10925

16SCH3215

DO NOT WRITE ON THIS PAGE

Question	Marks		
Number	Examiner Mark	Remark	
1			
2			
3			
4			
5			
6			
Total Marks			

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

227238

16SCH3216