Rem stior

ADVANCED SUBSIDIARY (AS)
General Certificate of Education
2017

Centre Numbe									
	Candidate Number								

Chemistry

Assessment Unit AS 3

assessing

Module 3: Basic

Practical Chemistry

Practical Booklet A

[SCH31] *SCH31*

WEDNESDAY 3 MAY, MORNING

TIME

1 hour 15 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

You must answer the questions in the spaces provided.

Do not write outside the boxed area on each page or on blank pages.

Complete in black ink only. Do not write with a gel pen.

Answer all three questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 25.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

A Periodic Table of Elements (including some data) is provided.

You may not have access to notes, textbooks and other material to assist you. Safety glasses should be worn at all times and care should be taken during this practical examination.

			. [
(b)	Give	e observations obtained when the procedures listed below are performed.	
	(i)	Mix 2 cm ³ of A with 2 cm ³ of B in a test tube.	
			. [
	(ii)	Mix 2 cm^3 of A with 2 cm^3 of C in a test tube.	
			. [
	(iii)	Mix 2 cm^3 of A with 2 cm^3 of D in a test tube.	
			. [
	(iv)	Mix 2 cm ³ of B with 2 cm ³ of C in a test tube.	
			. [

ag Learning
Rewardin

Rowardin

Signaturing

Signaturing

Signaturing

Rowardin

Signaturing

Rowardin

Signaturing

Signaturing

Signaturing

Signaturing

Signaturing

Signaturing

Rewardin

Remarding
Sp Learning

Rewardin

Remarding
Towarding
Toward

Rewarding

10 January 10 January

rewarding ag Learning Rewarding

Rewardin 200 201 Learning

v) Mix 20	:m ³ of B wit	th 2 cm ³ of I	D in a test	t tube.		
						[1
						— ı·
vi) Mix 20	:m ³ of C wit	th 2 cm ³ of I	D in a test	t tube.		
						[2

[Turn over

10924

Œ

Rowarding L

A Learning

Rewarding L.

Rowarding L.
Rowarding L.
Rowarding L.
Rowarding L.
Rowarding L.
Rowarding L.
Rowarding L.
Rowarding L.
Rowarding L.

A Learning

GE Rewarding L

Rowarding L

Rowarding L

Rowarding L

Rowarding L

Rowarding L

Rowarding L

Rewarding L

Rowarding L

Rowarding L

Rowarding L

Rowarding L

Rowarding L

2 (a) You are required to react hydrochloric acid of unknown concentration with standard 2.0 mol dm⁻³ sodium hydroxide solution.

You are provided with:

hydrochloric acid of unknown concentration 2.0 mol dm⁻³ sodium hydroxide solution a thermometer

- Rinse out a burette with the hydrochloric acid.
- Fill the burette with the hydrochloric acid.
- Rinse out a pipette with the sodium hydroxide solution.
- Using the pipette and a pipette filler, place 25.0 cm³ of the sodium hydroxide solution in a polystyrene cup in a beaker.
- Measure and record the temperature of the sodium hydroxide solution.
- Add 5.0 cm³ of hydrochloric acid from the burette to the sodium hydroxide solution, stir and record the temperature in a suitable table.
- Continue adding 5.0 cm³ portions and recording the temperature, until 40.0 cm³ of hydrochloric acid solution has been added.
- Repeat the complete experiment to obtain a mean temperature.
- Present your results in a suitable table in the space below.

[4]

)

)

)

0

)

)

)

)

G:

G:

(b) (i) Label the axes on the graph, including the units.

[1]

(ii) Plot a graph of mean temperature against volume of hydrochloric acid

[2]

[Turn over

(a)		cribe the smell of each of the liquids. E	
	(ii)	F	
	(iii)	G	
(b)	(i)	Mix 2cm ³ of E with 2cm ³ of F in a test tube.	
	(ii)	Mix 2 cm ³ of E with 2 cm ³ of G in a test tube.	
	(iii)	Mix 2 cm ³ of F with 2 cm ³ of G in a test tube.	[;

ag Learning
Rewardin

Rowardin

Signaturing

Signaturing

Signaturing

Rowardin

Signaturing

Rowardin

Signaturing

Signaturing

Signaturing

Signaturing

Signaturing

Signaturing

Rewardin

Remarding
Sp Learning

Rewardin

Remarding

To Lisarning

To Li

Rewarding

2 Learning

Rewarding

newardir.

Rewardin

Rewardin 200 201 Learning

THIS IS THE END OF THE QUESTION PAPER

10924

Œ

Remarking L

Laming

Laming

Remarking L

Remarking L

Laming

Laming

Laming

Laming

Laming

Rewarding L

Rewarding L

Caming

Learning

Rewarding L

Learning

GE Rewarding L

Rewarding L

Rewarding L

Rewarding L

GE Rewarding L

Rewarding L

Learning Lea

Learning

Rewarding L

Rowarding L

DO NOT WRITE ON THIS PAGE

Question	Ма	rks
Number	Examiner Mark	Remark
1		
2		
3		

Rewarding

Gaming

Rewarding

Gaming

Rewarding

ng Learning
Rewarding

Rewardin

Rewardin

Rewardin

Rewardin

Rewarding

Page 1

Page 1

Page 2

Rewarding

Rewarding

E

Page Learning
Rewarding
Sty Learning
Sty Learning
Rewarding
Sty Learning
Sty Learning
Sty Learning
Sty Learning

Romardin,
Pag Learning
Pag Learning
Pag Learning
Romardin,
Pag Learning

3

Rewardin

Rewardin

) Seaming

Rewarding Learning

Rewardin

G:

Total	
Marks	

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

General Information

1 tonne = 10^6 g 1 metre = 10^9 nm

One mole of any gas at 293 K and a pressure of 1 atmosphere (10⁵ Pa) occupies a volume of 24 dm³

Avogadro Constant = $6.02 \times 10^{23} \text{ mol}^{-1}$

Planck Constant = $6.63 \times 10^{-34} \, \text{J} \, \text{s}$

Specific Heat Capacity of water = 4.2 J $\rm g^{-1}\,K^{-1}$

Speed of Light = $3 \times 10^8 \text{ m s}^{-1}$

Characteristic absorptions in IR spectroscopy

Wavenumber/cm ⁻¹	Bond	Compound
550-850	C-X (X = Cl, Br, I)	Haloalkanes
750–1100	C-C	Alkanes, alkyl groups
1000-1300	C-O	Alcohols, esters, carboxylic acids
1450-1650	C=C	Arenes
1600-1700	C=C	Alkenes
1650-1800	C=O	Carboxylic acids, esters, aldehydes,
		ketones, amides, acyl chlorides
2200–2300	C≡N	Nitriles
2500–3200	O–H	Carboxylic acids
2750–2850	C–H	Aldehydes
2850-3000	C–H	Alkanes, alkyl groups, alkenes, arenes
3200–3600	O–H	Alcohols
3300–3500	N–H	Amines, amides

Proton Chemical Shifts in Nuclear Magnetic Resonance Spectroscopy (relative to TMS)

Chemical Shift	Structure	
0.5-2.0	-CH	Saturated alkanes
0.5-5.5	-O H	Alcohols
1.0-3.0	-N H	Amines
2.0-3.0	-CO-C H	Ketones
	-N-C H	Amines
	C ₆ H ₅ –C H	Arene (aliphatic on ring)
2.0-4.0	X-C H	X = CI or Br (3.0-4.0)
		X = I(2.0-3.0)
4.5-6.0	-C=C H	Alkenes
5.5-8.5	RCON H	Amides
6.0-8.0	$-C_6H_5$	Arenes (on ring)
9.0-10.0	-CHO	Aldehydes
10.0-12.0	-COO H	Carboxylic acids

These chemical shifts are concentration and temperature dependent and may be outside the ranges indicated above.

GCE CHEMISTRY DATA SHEET GCE A/AS EXAMINATIONS CHEMISTRY

Including the Periodic Table of the Elements

For the use of candidates taking Advanced Subsidiary and Advanced Level Chemistry Examinations

Copies must be free from notes or additions of any kind. No other type of data booklet or information sheet is authorised for use in the examinations.

For first teaching from September 2016 For first award of AS Level in Summer 2017 For first award of A Level in Summer 2018 Subject Code: 1110

1	Ш			THE	PER	_	TAB Froup		F ELI	EMEN	NTS	Ш	IV	V	VI	VII	0
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 Hydrogen																	Helium 2
7 Lithium 3	9 Be Beryllium											B Boron	Carbon	14 N Nitrogen 7	16 O Oxygen 8	19 F Fluorine 9	Ne Neon
Na Sodium	Magnesium 12										_	27 Al Aluminium 13	Si Silicon	Phosphorus	16	35.5 Chlorine 17	40 Ar Argon 18
39 K Potassium 19	Ca Calcium 20	Scandium 21	Ti Titanium 22	Vanadium 23	Cr Chromium 24	Mn Manganese 25	Fe lron 26	Co Cobalt 27	Nickel 28	Cu Copper 29	5 Zn 30 Zinc	Gallium	Germanium	75 As Arsenic 33	Se Selenium 34	Br Bromine 35	Kr Krypton 36
Rb Rubidium 37	Sr Strontium 38	Y Y Yttrium 39	91 Zr Zirconium 40	Nb Niobium	96 Mo Molybdenum 42	98 TC Technetium 43	101 Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag 47	112 Cd Cadmium 48	115 In Indium 49	119 Sn 50	Sb Antimony 51	Tellurium 52	127 lodine 53	131 Xe Xenon 54
133 CS Caesium 55	137 Ba Barium 56	139 La* Lanthanum 57	178 Hf Hafnium 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 OS Osmium 76	192 	195 Pt Platinum 78	197 Au 79	Hg Mercury 80	204 TI Thallium 81	207 Pb Lead 82	209 Bi Bismuth 83	Polonium 84	210 At Astatine 85	Rn Radon 86
Francium 87	Radium 88	Actinium 89	261 Rf Rutherfordium 104	Db Dubnium 105	266 Sg Seaborgium 106	Bh Bohrium 107	HS Hassium 108	268 Mt Meitnerium 109	DS Darmstadtium	Roentgenium	285 Cn Copernicium 112						
	Lanthanum Actinium s			140 Cerium 58	141 Pr Praseodymium 59		145 Pm Promethium 61	150 Sm Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	173 Yb Ytterbium 70	Lu Lutetium 71
a a	= relative a	tomic mas	s (approx)		231	238	237	242	243	247	245		254	253	256	254	257

 $\begin{bmatrix} a \\ b \end{bmatrix}$ $\begin{bmatrix} a = 161at \\ x = atom \end{bmatrix}$

a = relative atomic mass (approx) 232

x = atomic symbol

b = atomic number

 Ce Cerium
 Pr Praseodymium
 Nd Promethium 60
 Sm Samarium 61
 Europium 63
 Gadolinium 64
 Tb Terbium 65
 Dy Dysprosium 66
 Holmium 67
 Erbium 68
 Thulium 70
 Yb Ytterbium 70
 Lu Lutetium 70

 232
 231
 238
 237
 242
 243
 247
 245
 251
 254
 253
 256
 254
 257

 Th Pa Protactinium 91
 Uranium 92
 93
 Plutonium 94
 95
 96
 97
 98
 99
 100
 Mendelevium 101
 Nobelium 102
 Lawrencium 103