Rem stior ADVANCED SUBSIDIARY (AS) General Certificate of Education 2017 | Centre Numbe | | | | | | | | | | |--------------|------------------|--|--|--|--|--|--|--|--| Candidate Number | # Chemistry Assessment Unit AS 3 assessing Module 3: Basic **Practical Chemistry** **Practical Booklet A** [SCH31] *SCH31* **WEDNESDAY 3 MAY, MORNING** #### TIME 1 hour 15 minutes. #### **INSTRUCTIONS TO CANDIDATES** Write your Centre Number and Candidate Number in the spaces provided at the top of this page. You must answer the questions in the spaces provided. Do not write outside the boxed area on each page or on blank pages. Complete in black ink only. Do not write with a gel pen. Answer all three questions. #### **INFORMATION FOR CANDIDATES** The total mark for this paper is 25. Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question. A Periodic Table of Elements (including some data) is provided. You may not have access to notes, textbooks and other material to assist you. Safety glasses should be worn at all times and care should be taken during this practical examination. | | | | . [| |-----|-------|--|-----| | (b) | Give | e observations obtained when the procedures listed below are performed. | | | | (i) | Mix 2 cm ³ of A with 2 cm ³ of B in a test tube. | | | | | | . [| | | (ii) | Mix 2 cm^3 of A with 2 cm^3 of C in a test tube. | | | | | | . [| | | (iii) | Mix 2 cm^3 of A with 2 cm^3 of D in a test tube. | | | | | | . [| | | (iv) | Mix 2 cm ³ of B with 2 cm ³ of C in a test tube. | | | | | | . [| ag Learning Rewardin Rowardin Signaturing Signaturing Signaturing Rowardin Signaturing Rowardin Signaturing Signaturing Signaturing Signaturing Signaturing Signaturing Rewardin Remarding Sp Learning Rewardin Remarding Towarding Toward Rewarding 10 January rewarding ag Learning Rewarding Rewardin 200 201 Learning | v) Mix 20 | :m ³ of B wit | th 2 cm ³ of I | D in a test | t tube. | | | |-------------------|---------------------------------|---------------------------|--------------------|---------|--|------| | | | | | | | [1 | | | | | | | | — ı· | | vi) Mix 20 | :m ³ of C wit | th 2 cm ³ of I | D in a test | t tube. | | | | | | | | | | [2 | [Turn over 10924 Œ Rowarding L A Learning Rewarding L. Rowarding A Learning GE Rewarding L Rowarding L Rowarding L Rowarding L Rowarding L Rowarding L Rowarding L Rewarding L Rowarding L Rowarding L Rowarding L Rowarding L Rowarding L **2** (a) You are required to react hydrochloric acid of unknown concentration with standard 2.0 mol dm⁻³ sodium hydroxide solution. You are provided with: hydrochloric acid of unknown concentration 2.0 mol dm⁻³ sodium hydroxide solution a thermometer - Rinse out a burette with the hydrochloric acid. - Fill the burette with the hydrochloric acid. - Rinse out a pipette with the sodium hydroxide solution. - Using the pipette and a pipette filler, place 25.0 cm³ of the sodium hydroxide solution in a polystyrene cup in a beaker. - Measure and record the temperature of the sodium hydroxide solution. - Add 5.0 cm³ of hydrochloric acid from the burette to the sodium hydroxide solution, stir and record the temperature in a suitable table. - Continue adding 5.0 cm³ portions and recording the temperature, until 40.0 cm³ of hydrochloric acid solution has been added. - Repeat the complete experiment to obtain a mean temperature. - Present your results in a suitable table in the space below. [4]))) 0)))) G: G: (b) (i) Label the axes on the graph, including the units. [1] (ii) Plot a graph of mean temperature against volume of hydrochloric acid [2] [Turn over | (a) | | cribe the smell of each of the liquids. E | | |-----|-------|--|----| | | | | | | | (ii) | F | | | | (iii) | G | | | (b) | (i) | Mix 2cm ³ of E with 2cm ³ of F in a test tube. | | | | (ii) | Mix 2 cm ³ of E with 2 cm ³ of G in a test tube. | | | | (iii) | Mix 2 cm ³ of F with 2 cm ³ of G in a test tube. | [; | | | | | | | | | | | | | | | | ag Learning Rewardin Rowardin Signaturing Signaturing Signaturing Rowardin Signaturing Rowardin Signaturing Signaturing Signaturing Signaturing Signaturing Signaturing Rewardin Remarding Sp Learning Rewardin Remarding To Lisarning Li Rewarding 2 Learning Rewarding newardir. Rewardin Rewardin 200 201 Learning ## THIS IS THE END OF THE QUESTION PAPER 10924 Œ Remarking L Laming Laming Remarking L Remarking L Laming Laming Laming Laming Laming Rewarding L Rewarding L Caming Learning Rewarding L Learning GE Rewarding L Rewarding L Rewarding L Rewarding L GE Rewarding L Rewarding L Learning Lea Learning Rewarding L Rowarding L ### DO NOT WRITE ON THIS PAGE | Question | Ма | rks | |----------|------------------|--------| | Number | Examiner
Mark | Remark | | 1 | | | | 2 | | | | 3 | | | Rewarding Gaming Rewarding Gaming Rewarding ng Learning Rewarding Rewardin Rewardin Rewardin Rewardin Rewarding Page 1 Page 1 Page 2 Rewarding Rewarding **E** Page Learning Rewarding Sty Learning Sty Learning Rewarding Sty Learning Sty Learning Sty Learning Sty Learning Romardin, Pag Learning Pag Learning Pag Learning Romardin, Pag Learning **3** Rewardin Rewardin) Seaming Rewarding Learning Rewardin G: | Total | | |-------|--| | Marks | | Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified. #### **General Information** 1 tonne = 10^6 g 1 metre = 10^9 nm One mole of any gas at 293 K and a pressure of 1 atmosphere (10⁵ Pa) occupies a volume of 24 dm³ Avogadro Constant = $6.02 \times 10^{23} \text{ mol}^{-1}$ Planck Constant = $6.63 \times 10^{-34} \, \text{J} \, \text{s}$ Specific Heat Capacity of water = 4.2 J $\rm g^{-1}\,K^{-1}$ Speed of Light = $3 \times 10^8 \text{ m s}^{-1}$ #### Characteristic absorptions in IR spectroscopy | Wavenumber/cm ⁻¹ | Bond | Compound | |-----------------------------|---------------------|--| | 550-850 | C-X (X = Cl, Br, I) | Haloalkanes | | 750–1100 | C-C | Alkanes, alkyl groups | | 1000-1300 | C-O | Alcohols, esters, carboxylic acids | | 1450-1650 | C=C | Arenes | | 1600-1700 | C=C | Alkenes | | 1650-1800 | C=O | Carboxylic acids, esters, aldehydes, | | | | ketones, amides, acyl chlorides | | 2200–2300 | C≡N | Nitriles | | 2500–3200 | O–H | Carboxylic acids | | 2750–2850 | C–H | Aldehydes | | 2850-3000 | C–H | Alkanes, alkyl groups, alkenes, arenes | | 3200–3600 | O–H | Alcohols | | 3300–3500 | N–H | Amines, amides | # **Proton Chemical Shifts in Nuclear Magnetic Resonance Spectroscopy** (relative to TMS) | Chemical Shift | Structure | | |----------------|---|---------------------------| | 0.5-2.0 | -CH | Saturated alkanes | | 0.5-5.5 | -O H | Alcohols | | 1.0-3.0 | -N H | Amines | | 2.0-3.0 | -CO-C H | Ketones | | | -N-C H | Amines | | | C ₆ H ₅ –C H | Arene (aliphatic on ring) | | 2.0-4.0 | X-C H | X = CI or Br (3.0-4.0) | | | | X = I(2.0-3.0) | | 4.5-6.0 | -C=C H | Alkenes | | 5.5-8.5 | RCON H | Amides | | 6.0-8.0 | $-C_6H_5$ | Arenes (on ring) | | 9.0-10.0 | -CHO | Aldehydes | | 10.0-12.0 | -COO H | Carboxylic acids | | | | | These chemical shifts are concentration and temperature dependent and may be outside the ranges indicated above. # GCE CHEMISTRY DATA SHEET GCE A/AS EXAMINATIONS CHEMISTRY #### Including the Periodic Table of the Elements For the use of candidates taking Advanced Subsidiary and Advanced Level Chemistry Examinations Copies must be free from notes or additions of any kind. No other type of data booklet or information sheet is authorised for use in the examinations. For first teaching from September 2016 For first award of AS Level in Summer 2017 For first award of A Level in Summer 2018 Subject Code: 1110 | 1 | Ш | | | THE | PER | _ | TAB
Froup | | F ELI | EMEN | NTS | Ш | IV | V | VI | VII | 0 | |----------------------------|---------------------------|-------------------------------|--|-----------------------------|---------------------------------------|------------------------------|----------------------------------|-----------------------------|------------------------------|--------------------------------------|-----------------------------------|-------------------------------|--------------------------------|----------------------------|----------------------------|-----------------------------------|---------------------------------| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 1
Hydrogen | | | | | | | | | | | | | | | | | Helium 2 | | 7
Lithium
3 | 9
Be
Beryllium | | | | | | | | | | | B
Boron | Carbon | 14
N
Nitrogen
7 | 16
O
Oxygen
8 | 19
F
Fluorine
9 | Ne Neon | | Na
Sodium | Magnesium 12 | | | | | | | | | | _ | 27
Al
Aluminium
13 | Si
Silicon | Phosphorus | 16 | 35.5
Chlorine
17 | 40
Ar
Argon
18 | | 39
K
Potassium
19 | Ca
Calcium
20 | Scandium 21 | Ti
Titanium
22 | Vanadium 23 | Cr
Chromium
24 | Mn
Manganese
25 | Fe lron 26 | Co
Cobalt
27 | Nickel 28 | Cu
Copper
29 | 5 Zn 30 Zinc | Gallium | Germanium | 75
As
Arsenic
33 | Se
Selenium
34 | Br
Bromine
35 | Kr
Krypton
36 | | Rb
Rubidium
37 | Sr
Strontium
38 | Y
Y
Yttrium
39 | 91
Zr
Zirconium
40 | Nb
Niobium | 96
Mo
Molybdenum
42 | 98
TC
Technetium
43 | 101
Ru
Ruthenium
44 | 103
Rh
Rhodium
45 | 106
Pd
Palladium
46 | 108
Ag
47 | 112
Cd
Cadmium
48 | 115
In
Indium
49 | 119
Sn
50 | Sb
Antimony
51 | Tellurium 52 | 127

 lodine
 53 | 131
Xe
Xenon
54 | | 133
CS
Caesium
55 | 137
Ba
Barium
56 | 139
La*
Lanthanum
57 | 178
Hf
Hafnium
72 | 181
Ta
Tantalum
73 | 184
W
Tungsten
74 | 186
Re
Rhenium
75 | 190
OS
Osmium
76 | 192
 | 195
Pt
Platinum
78 | 197
Au
79 | Hg
Mercury
80 | 204
TI
Thallium
81 | 207
Pb
Lead
82 | 209
Bi
Bismuth
83 | Polonium 84 | 210
At
Astatine
85 | Rn
Radon
86 | | Francium 87 | Radium 88 | Actinium 89 | 261
Rf
Rutherfordium
104 | Db
Dubnium
105 | 266
Sg
Seaborgium
106 | Bh
Bohrium
107 | HS
Hassium
108 | 268 Mt Meitnerium 109 | DS
Darmstadtium | Roentgenium | 285
Cn
Copernicium
112 | | | | | | | | | Lanthanum
Actinium s | | | 140
Cerium
58 | 141
Pr
Praseodymium
59 | | 145
Pm
Promethium
61 | 150
Sm
Samarium
62 | 152
Eu
Europium
63 | 157
Gd
Gadolinium
64 | 159
Tb
Terbium
65 | 162
Dy
Dysprosium
66 | 165
Ho
Holmium
67 | 167
Er
Erbium
68 | 169
Tm
Thulium
69 | 173
Yb
Ytterbium
70 | Lu
Lutetium
71 | | a a | = relative a | tomic mas | s (approx) | | 231 | 238 | 237 | 242 | 243 | 247 | 245 | | 254 | 253 | 256 | 254 | 257 | $\begin{bmatrix} a \\ b \end{bmatrix}$ $\begin{bmatrix} a = 161at \\ x = atom \end{bmatrix}$ a = relative atomic mass (approx) 232 x = atomic symbol b = atomic number Ce Cerium Pr Praseodymium Nd Promethium 60 Sm Samarium 61 Europium 63 Gadolinium 64 Tb Terbium 65 Dy Dysprosium 66 Holmium 67 Erbium 68 Thulium 70 Yb Ytterbium 70 Lu Lutetium 70 232 231 238 237 242 243 247 245 251 254 253 256 254 257 Th Pa Protactinium 91 Uranium 92 93 Plutonium 94 95 96 97 98 99 100 Mendelevium 101 Nobelium 102 Lawrencium 103