Centre Number

Other Names

wjec

GCSE

3410U10-1

WEDNESDAY, 12 JUNE 2019 – MORNING

CHEMISTRY – Unit 1: Chemical Substances, Reactions and Essential Resources

FOUNDATION TIER

1 hour 45 minutes

For Examiner's use only						
Question	Maximum Mark	Mark Awarded				
1.	7					
2.	7					
3.	8					
4.	6					
5.	6					
6.	6					
7.	10					
8.	10					
9.	7					
10.	7					
11.	6					
Total	80					

ADDITIONAL MATERIALS

In addition to this examination paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

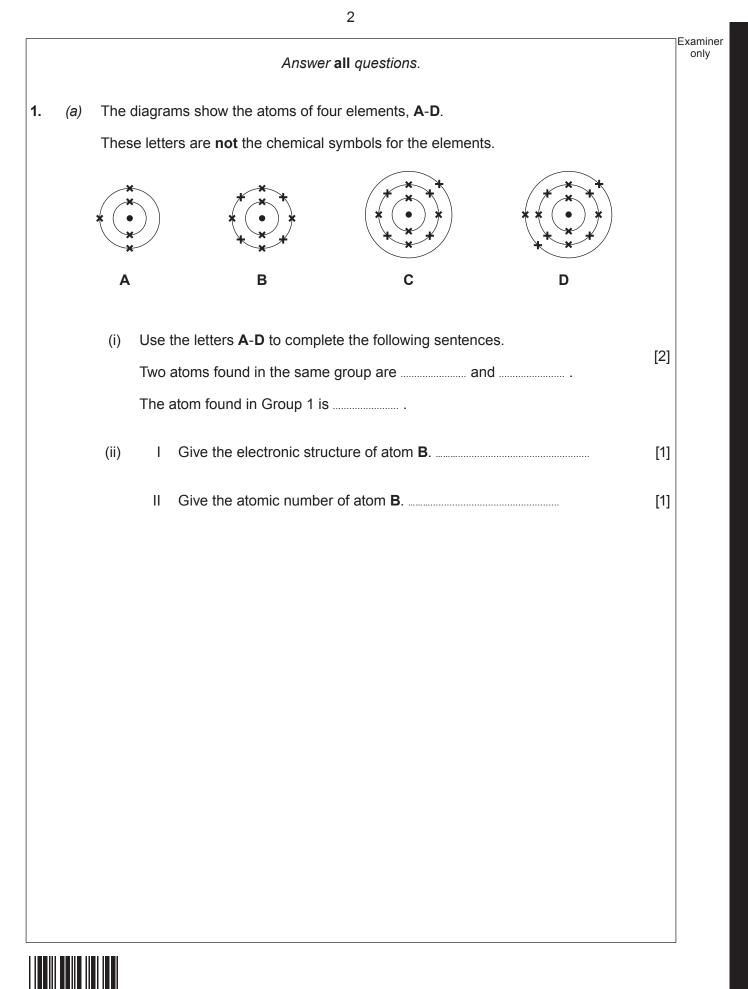
Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

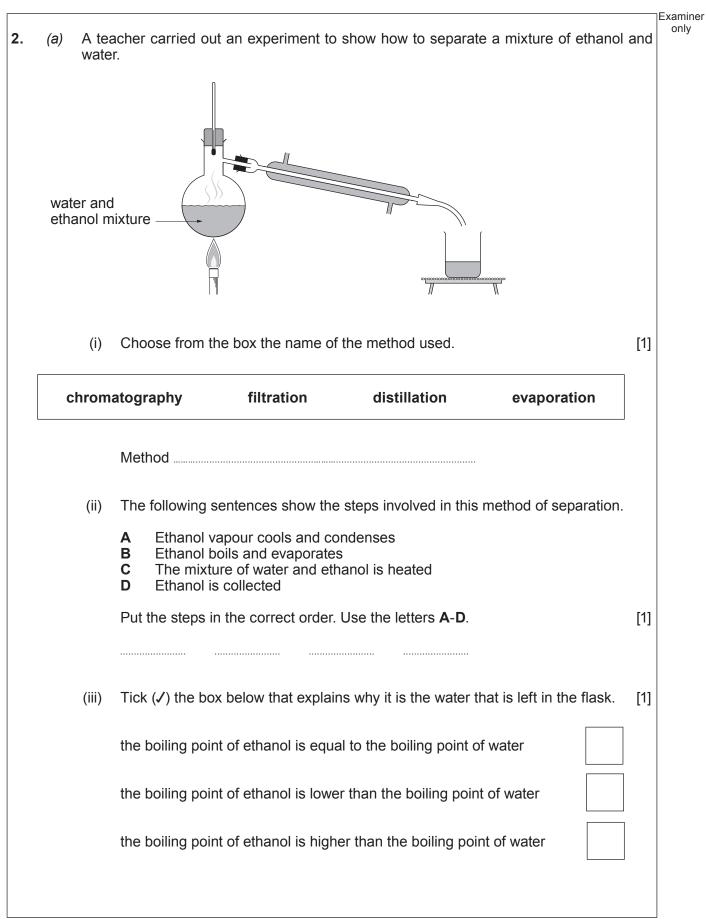
Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back

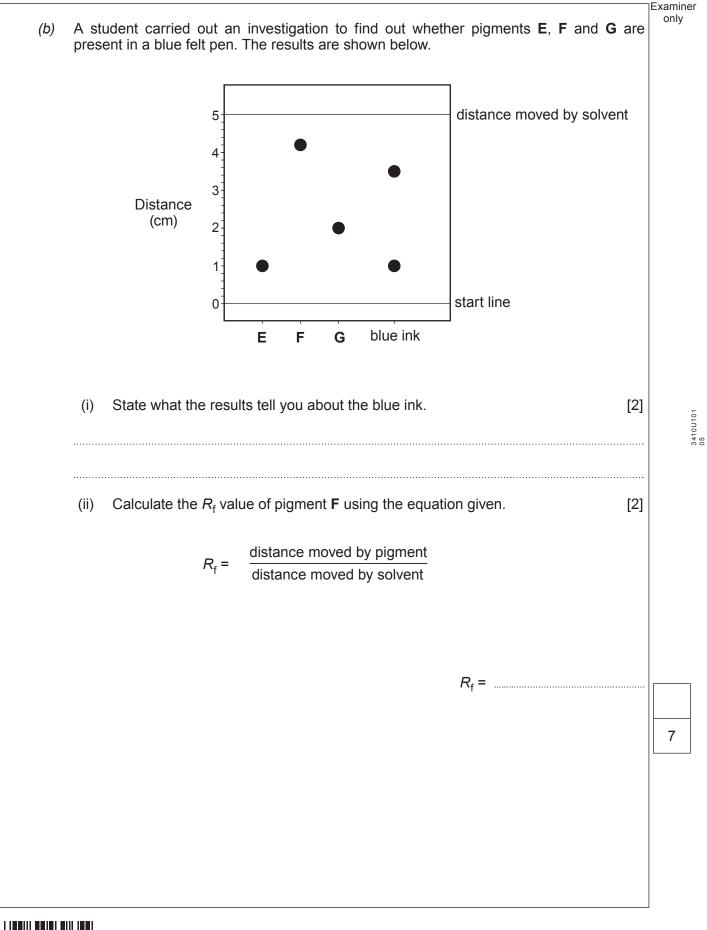
of the booklet, taking care to number the question(s) correctly.


INFORMATION FOR CANDIDATES

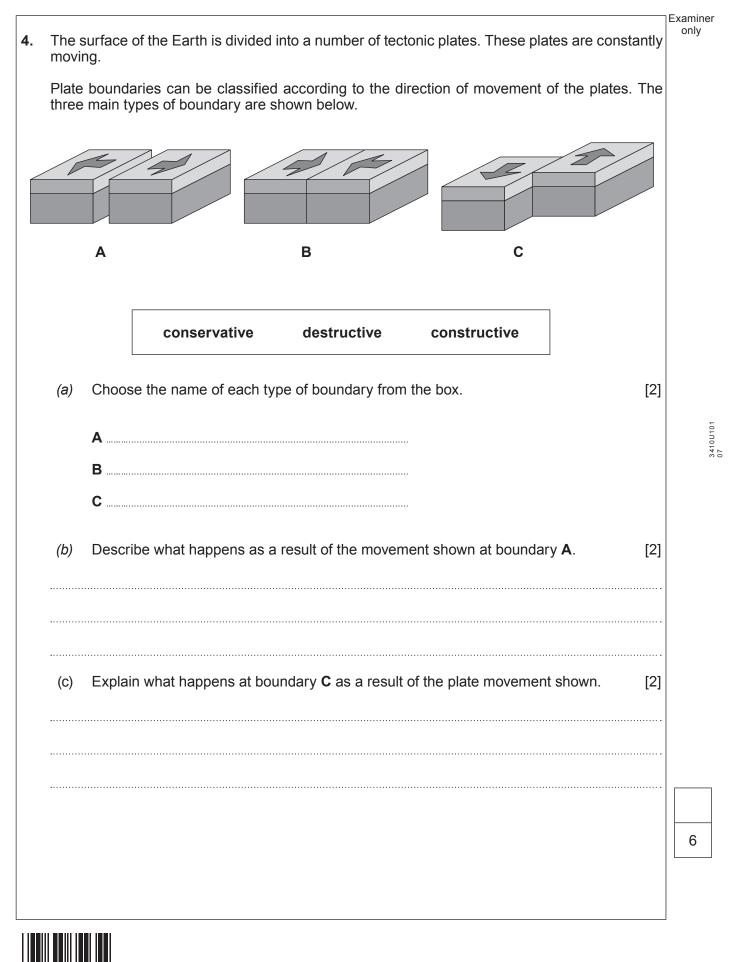
The number of marks is given in brackets at the end of each question or part-question.

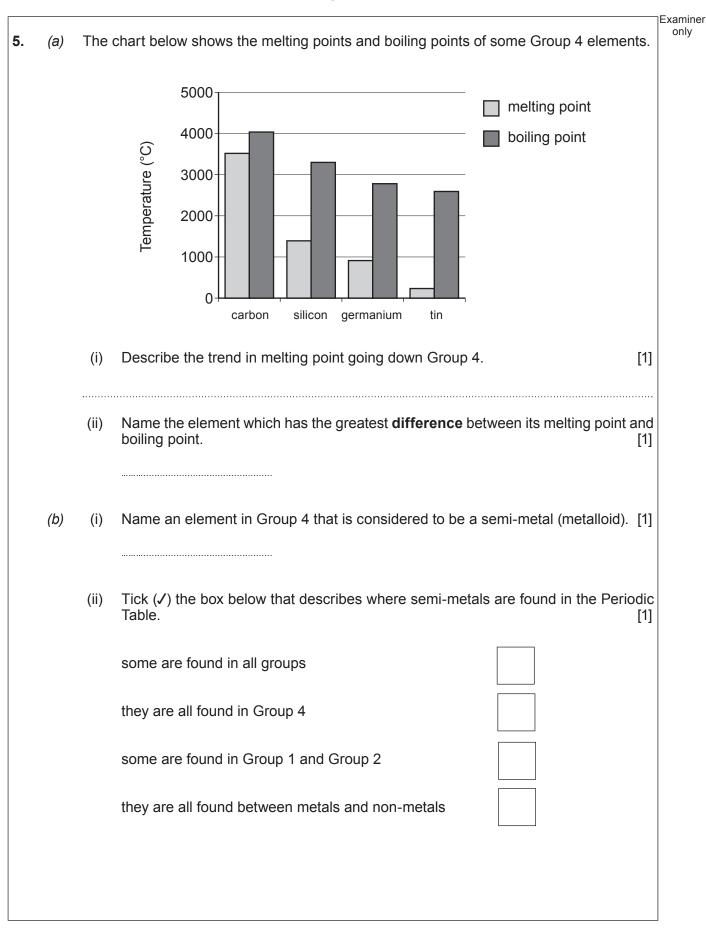

Question 7(a) is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.



3		
(b) The following diagram shows an atom of lithium.		Examiner only
(i) Complete the following sentences. Particle X is an	[2]	
Particle Y found in the nucleus is a		
(ii) Use the diagram to explain why lithium has a mass number of 7.	[1]	
		3410U101 03
		~ ⁶ 6
		7
03 © WJEC CBAC Ltd. (3410U10-1)	Turn over.	




			2				
					$\bigcirc\bigcirc$		
	А	. I	3	С	D	E	
Key		carbon		hydrogen	\bigcirc	oxygen	
	(i)	State which diag			ement. Give a re	ason for your a	nswer. [2]
		Reason					
	(ii)	State which diag	ram, A-E , re		on dioxide, CO ₂ .		[1]
	(iii)	Give the formula		ance represen	ted by diagram C) .	[1]
(b)		n copper(II) sulfa oxide, Cu(OH) ₂ , a	ate solution			e, it forms co	pper(II)
	(i)	Write a word eq	uation for the	e reaction takir	ng place.		[1]
	(ii)			sulfur found in	the formula Na_2	SO ₄ .	[1]
	(iii)	Give the total nu	umber of ator	ms in the form	ula Cu(OH) ₂ .		[1]
(C)	lron(III) sulfate reacts v		nydroxide to pr	oduce iron(III) hy	droxide.	
	Write	e the formula of irc	on(III) hydroxi	ide.			[1]

Turn over.

© WJEC CBAC Ltd.

(3410U10-1)

Examiner (C) Carbon is the main element found in coal. When carbon burns it forms carbon dioxide. Write a **word** equation to show the reaction taking place. (i) [1] Name one environmental problem caused by increased levels of carbon dioxide in (ii) the atmosphere. [1]

3410U101 09

only

6. This question is about the development of the Periodic Table.

In 1890, not all the elements had been discovered. A Russian scientist named Dmitri Mendeleev used the reactions of the known elements and their relative atomic masses to arrange them in the following table.

H 1.01			IV	V	VI	VII			
Li 6.94	Be 9.01	B 10.8	C 12.0	N 14.0	O 16.0	F 19.0			
Na 23.0	Mg 24.3	Al 27.0	Si 28.1	P 31.0	S 32.1	CI 35.5		VIII	
K 39.1	Ca 40.1		Ti 47.9	V 50.9	Cr 52.0	Mn 54.9	Fe 55.9	Co 58.9	Ni 58.7
Cu 63.5	Zn 65.4			As 74.9	Se 79.0	Br 79.9			
Rb 85.5	Sr 87.6	Y 88.9	Zr 91.2	Nb 92.9	Mo 95.9		Ru 101	Rh 103	Pd 106
Ag 108	Cd 112	In 115	Sn 119	Sb 122	Te 128	 127			
Ce 133	Ba 137	La 139		Ta 181	W 184		Os 194	lr 192	Pt 195
Au 197	Hg 201	Ti 204	Pb 207	Bi 209					
			Th 232		U 238				

Mendeleev's table

Based on the properties of the known elements, he predicted that new elements would be discovered and left gaps for these in his table. He even predicted what the properties of these undiscovered elements would be. He gave the name ekasilicon to one of them. The element that fits into this gap was eventually discovered and named germanium.

	Predicted properties of ekasilicon (Ek)	Actual properties of germanium (Ge)
Atomic mass	72	72.59
Density (g/cm ³)	5.5	5.35
Melting point	high	937.4 °C
Colour of metal	grey	grey-white
Formula of oxide	EkO ₂	GeO ₂
Formula of chloride	EkCl ₄	GeCl ₄

Comparison of the properties of ekasilicon and germanium

The modern day Periodic Table is based on Mendeleev's original table.

(a) (i) Put a tick (✓) in the correct column to show whether the following statements apply to Mendeleev's table only, today's table only or to both tables. [2]

	Mendeleev only	Today only	Both tables
the table is organised into groups			
copper and potassium are in the same group			
there are gaps in the table			
fluorine and chlorine are in the same group			

(ii) Tick (✓) the two statements that best describe why germanium was confirmed to be the element ekasilicon predicted by Mendeleev. [1]

germanium has exactly the same atomic mass as that predicted for ekasilicon

germanium has a different colour to that predicted for ekasilicon

germanium has a similar density to that predicted for ekasilicon

germanium oxide has the same ratio of atoms as that predicted for ekasilicon oxide

germanium oxide and germanium chloride have the same ratio of atoms

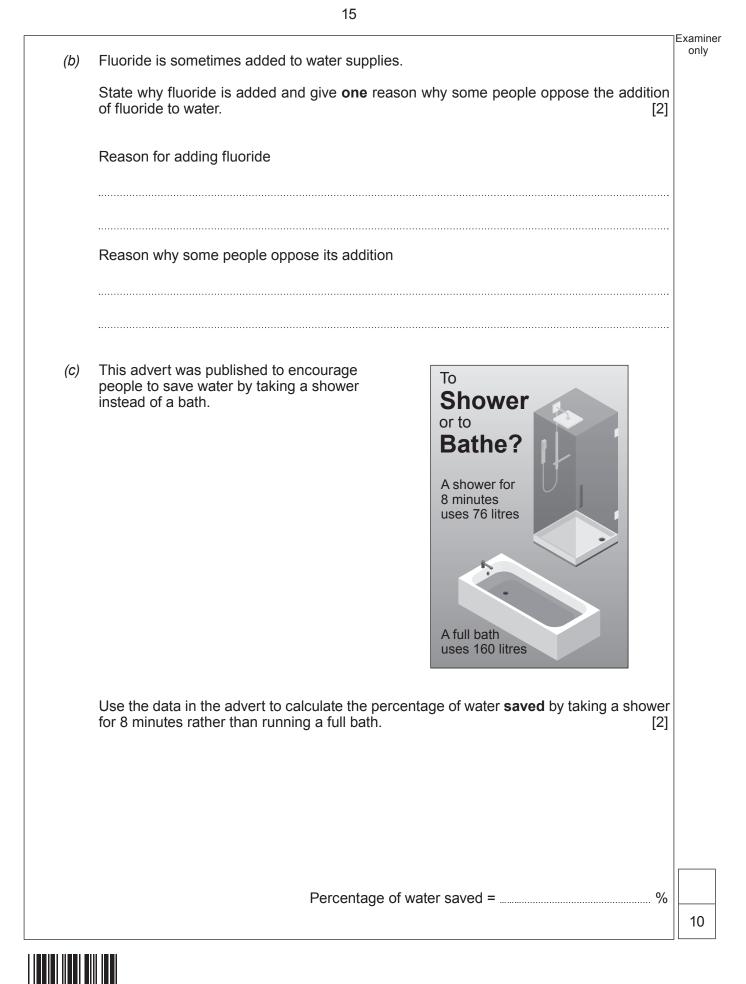
Examiner only

(a) (i) Calculate the percentage of oxygen present in the formula of germanium oxide.

$$A_{i}(Ge) = 73 \qquad A_{i}(O) = 16$$
Percentage = ______%
(ii) When germanium oxide reacts with hydrochloric acid it produces germanium chloride and water.
Balance the following equation for the reaction that takes place.
[1]
$$GeO_{2} + HCI \longrightarrow GeCI_{4} + H_{2}O$$
6

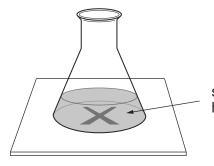
BLANK PAGE

13


PLEASE DO NOT WRITE ON THIS PAGE

(a)	The water used in our homes is treated to make it safe to drink.						
	State the main stages involved in the treatment of the public water supply. Describe the purpose of each stage. [6QER]						
	You do not need to refer to fluoridation in your answer.						
••••••							

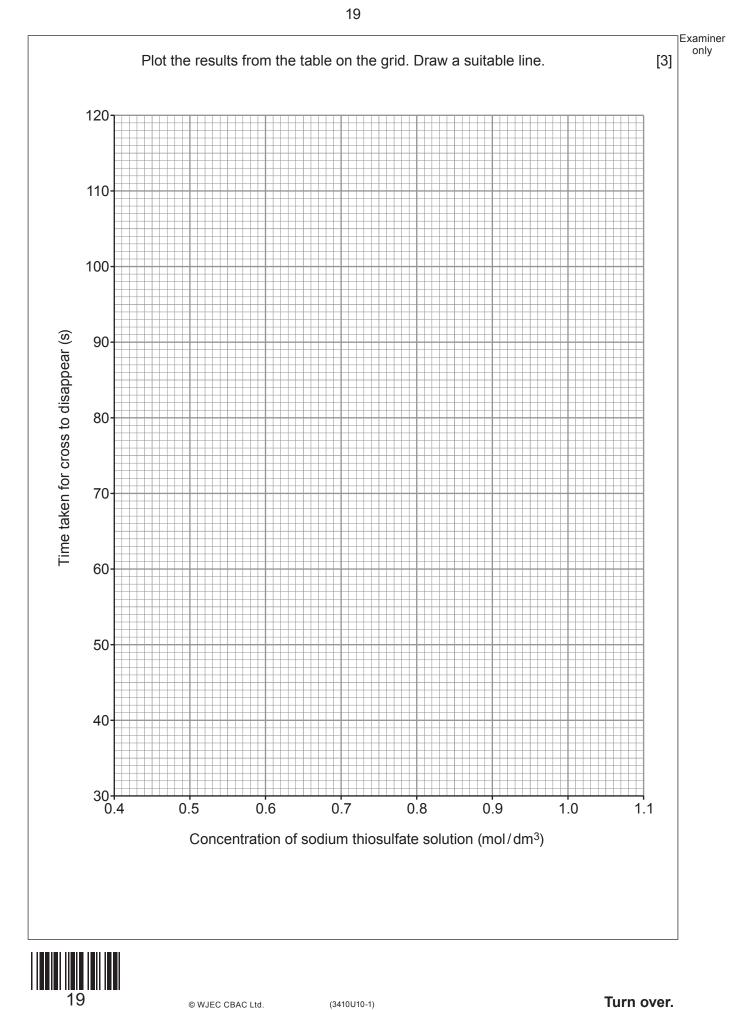
BLANK PAGE


16

PLEASE DO NOT WRITE ON THIS PAGE

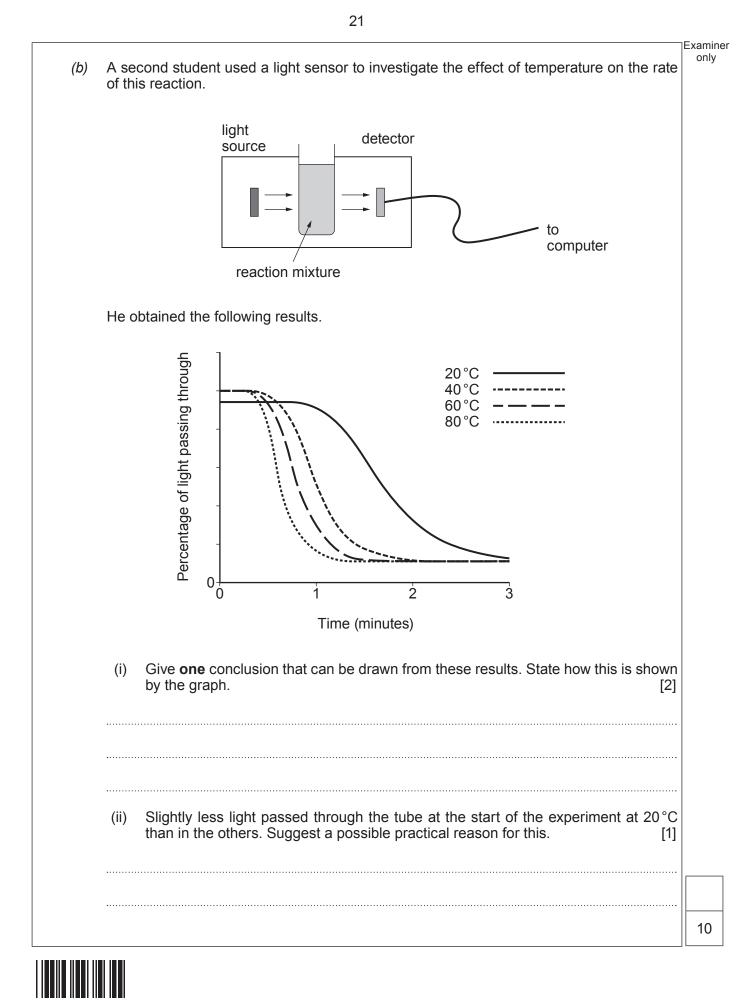
		μ	Examine
8. (a)	A stu its re	udent was investigating how the concentration of sodium thiosulfate solution affects eaction with hydrochloric acid.	only
	(i)	The reaction taking place can be represented by the following equation, which is not balanced.	
		Write the number 2 in one of the boxes on the right hand side in order to balance the equation. [1]	
2HCl(aq)	+ N	$Ia_2S_2O_3(aq) \longrightarrow SO_2(g) + S(s) + NaCl(aq) + H_2O(l)$	
	(ii)	During the reaction, the solution becomes cloudy due to the formation of a precipitate. State the meaning of the term <i>precipitate</i> . [1]	
	••••••		

(iii) The time taken for the cross to disappear was measured as shown below.

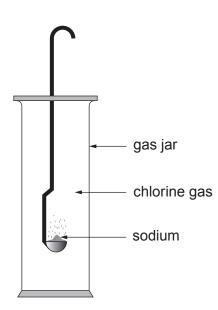


sodium thiosulfate and hydrochloric acid

The results are shown in the table.


Concentration of sodium thiosulfate solution (mol/dm ³)	Time taken for cross to disappear (s)
1.0	42
0.9	46
0.8	53
0.7	66
0.6	87
0.5	110

Examiner only (iv) State how concentration affects the time taken for the cross to disappear. [1] What conclusion can be drawn about the effect of concentration on the rate of this (v) reaction? [1]



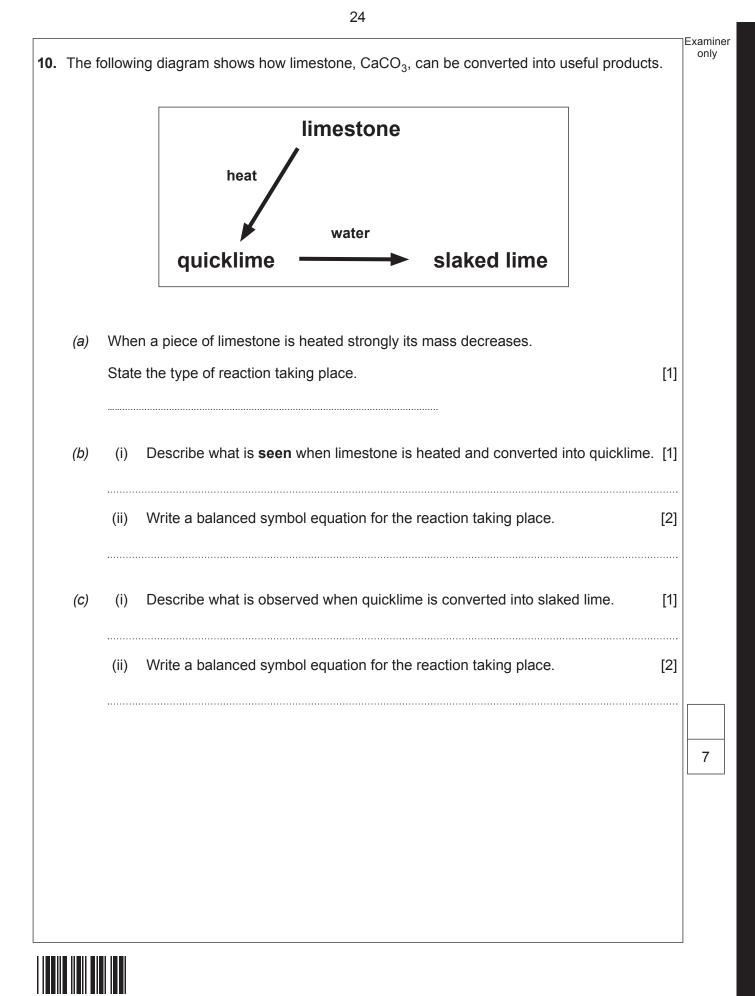
Metal	Melting point (°C)	Boiling point (°C)	Density (g/cm ³)	Reaction with chlorine	
lithium	180	1342	0.54	reacts slowly to make a white salt	
sodium	97	883	0.97	burns vigorously with a yellow flame to make a white salt	
potassium	63	759	0.88	reacts violently to make a white salt	
rubidium	39	688	1.53	explosive reaction	
caesium	28	671	1.93	explosive reaction	
	Describe the trer			group. roup in terms of electronic struct	[1] ure. [2]

(b) The apparatus below can be used to demonstrate the reaction between sodium and chlorine.

23

(i) Apart from the use of safety goggles, state **one** safety precaution that needs to be followed when using **each** of these elements. [2]

Element	Safety precaution
sodium	
chlorine	


(ii) Complete and balance the symbol equation for the reaction that takes place between sodium and chlorine. [2]

7

Examiner

© WJEC CBAC Ltd.

(3410U10-1)

Ltd.

Examiner only 11. Enzymes are biological catalysts. State what is meant by the term catalyst. (a) [2] (b) The following graphs show how the activity of two enzymes, **A** and **B**, varies with pH. R Enzyme activity Ż 5 6 8 pН Use the graphs to compare the activities of the two enzymes. [2] (i) (ii) Enzyme C is found in saliva. It works between pH 5 and pH 9 but is best at a neutral pH. Sketch on the grid above how the activity varies with pH. [2] 6 **END OF PAPER**

25

tion ber	Additional page, if required. Write the question number(s) in the left-hand margin.	Exami only
		1

NameFormulaNameFormulaaluminium AI^{3^+} bromide Br^- ammonium NH_4^+ carbonate $CO_3^{2^-}$ barium Ba^{2^+} chloride CI^- calcium Ca^{2^+} fluoride F^- copper(II) Cu^{2^+} hydroxide OH^- hydrogen H^+ iodide I^- iron(III) Fe^{3^+} oxide O^{2^-} itthium Li^+ sulfate $SO_4^{2^-}$ magnesium Mg^{2^+} nitckel Ni^{2^+} potassium K^+ silver Ag^+ sodium Na^+ zinc Zn^{2^+}	POSITIVE IONS		NEGATIVE IONS			
ammonium NH_4^+ carbonate $CO_3^{2^-}$ barium Ba^{2^+} chloride CI^- calcium Ca^{2^+} fluoride F^- copper(II) Cu^{2^+} hydroxide OH^- hydrogen H^+ iodide I^- iron(II) Fe^{2^+} nitrate NO_3^- iron(III) Fe^{3^+} oxide O^{2^-} lithium Li^+ sulfate $SO_4^{2^-}$ magnesium Mg^{2^+} nickel Ni^{2^+} potassium K^+ silver Ag^+ sodium Na^+	Name	Formula	Name	Formula		
bariumBa2+chlorideCIcalciumCa2+fluorideF-copper(II)Cu2+hydroxideOH-hydrogenH*iodideI-iron(II)Fe2+nitrateNO3-iron(III)Fe3+oxideO2-lithiumLi*sulfateSO42-magnesiumMg2+Ni2+sulfatepotassiumK*silverAg*sodiumNa*Na*	aluminium	Al ³⁺	bromide	Br ⁻		
bariumBa2+chlorideCl-calciumCa2+fluorideF-copper(II)Cu2+hydroxideOH-hydrogenH+iodideI-iron(II)Fe2+nitrateNO3-iron(III)Fe3+oxideO2-lithiumLi+sulfateSO42-magnesiumMg2+Ni2+sulfatepotassiumK+silverAg+sodiumNa+Na+	ammonium	NH4 ⁺	carbonate	CO3 ²⁻		
calciumCa2+fluorideF ⁻ copper(II)Cu2+hydroxideOH ⁻ hydrogenH*iodideI ⁻ iron(II)Fe2+nitrateNO3 ⁻ iron(III)Fe3+oxideO2-lithiumLi*sulfateSO42-magnesiumMg2+Ni2+nickelNi2+Ag*silverAg*Na*	barium	Ba ²⁺	chloride	-		
hydrogenH*iodideI^-iron(II)Fe²+nitrateNO3^-iron(III)Fe³+oxideO²-lithiumLi*sulfateSO4²-magnesiumMg²+sulfateSO4²-nickelNi²+silverAg*silverAg*sodiumNa*	calcium	Ca ²⁺	fluoride	F		
iron(II) Fe ²⁺ nitrate NO ₃ ⁻ oxide O ²⁻ lithium Li ⁺ sulfate SO ₄ ²⁻ magnesium Mg ²⁺ nickel Ni ²⁺ potassium K ⁺ silver Ag ⁺ sodium Na ⁺	copper(II)	Cu ²⁺	hydroxide	OH⁻		
iron(III) Fe ³⁺ oxide O ²⁻ lithium Li ⁺ sulfate SO ₄ ²⁻ magnesium Mg ²⁺ nickel Ni ²⁺ potassium K ⁺ silver Ag ⁺ sodium Na ⁺	hydrogen	H⁺	iodide	I_		
iron(III) Fe ³⁺ oxide O ²⁻ lithium Li ⁺ sulfate SO ₄ ²⁻ magnesium Mg ²⁺ nickel Ni ²⁺ potassium K ⁺ silver Ag ⁺ sodium Na ⁺	iron(II)	Fe ²⁺	nitrate	NO_3^{-}		
lithium Li ⁺ sulfate SO ₄ ²⁻ magnesium Mg ²⁺ nickel Ni ²⁺ potassium K ⁺ silver Ag ⁺ sodium Na ⁺			oxide	O ²⁻		
magnesium Mg ²⁺ nickel Ni ²⁺ potassium K ⁺ silver Ag ⁺ sodium Na ⁺		Li ⁺	sulfate	SO4 ²⁻		
nickel Ni ²⁺ potassium K ⁺ silver Ag ⁺ sodium Na ⁺	magnesium	Mg ²⁺		•		
potassium K ⁺ silver Ag ⁺ sodium Na ⁺		Ni ²⁺				
sodium Na ⁺	potassium	K ⁺				
sodium Na ⁺	silver	Ag ⁺				
zinc Zn ²⁺	sodium					
	zinc					

		,	ſ		r	r	1
0	4 Helium 2	20 Neon 10	40 Ar Argon 18	84 Krypton 36	131 Xe Xenon 54	222 Rn Radon 86	
~		19 F Fluorine 9	35.5 CI Chlorine	80 Br Bromine 35	127 lodine 53	210 At Astatine 85	
Q		16 O Oxygen 8	32 Sulfur 16	79 Selenium 34	128 Te Tellurium 52	210 Polonium 84	
Ŋ		14 Nitrogen 7	31 Phosphorus 15	75 As Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth 83	
4		12 Carbon 6	28 Silicon 14	73 Germanium 32	119 Sn 50	207 Pb Lead 82	
n		11 B 5 5	27 Al Aluminium 13	70 Ga 31	115 In Indium 49	204 TI Thallium 81	
ш				65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80	
ABL				63.5 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79	
DIC T				59 Nickel 28	106 Pd Palladium 46	195 Pt 78	
RIOI				59 Co Cobalt 27	103 Rh 45	192 Ir 77	
THE PERIODIC TABLE Sroup		1		56 Fe Iron 26	101 Ruthenium 44	190 Osmium 76	Key
THE F Group	Hydrogen			55 Mn Manganese 25	99 TC Technetium	186 Re 75	
				52 Chromium 24	96 Molybdenum 42	184 V Tungsten 74	
				51 Vanadium 23	93 Niobium 41	181 Ta Tantalum 73	
				48 Ti 22	91 Zr Zirconium 40	179 Hf Hafnium 72	
				45 Sc 21	$\overset{89}{\star}_{39}^{\text{R}}$	139 La Lanthanum 57	227 Actinium 89
2		9 Be Beryllium	24 Mg 12 12	40 Ca Calcium 20	88 Strontium 38		
		7 Li 1 3	23 Na Sodium	39 Rotassium 19	86 Rb Rubidium 37	133 Cs Caesium 55	223 Fr Francium 87
28		© WJEC CBAC I		(3410U10-1)	1	L	L]

 relative atomic mass atomic number Ι A_r Symbol Name