Surname			Centre Number	Candidate Number
Other Names				0
	GCSE – NEW			
wjec cbac	C410U20-1	III III IIIIIIIIIIIIIIIIIIIIIIIIIIIIII	III e	duqas

CHEMISTRY – Component 2 Applications in Chemistry

FOUNDATION TIER

WEDNESDAY, 13 JUNE 2018 – MORNING

1 hour 15 minutes

For Exa	For Examiner's use only			
Question	Maximum Mark	Mark Awarded		
1.	5			
2.	6			
3.	10			
4.	7			
5.	11			
6.	6			
7.	15			
Total	60			

ADDITIONAL MATERIALS

In addition to this examination paper you will need a:

- calculator and ruler; •
- **Resource Booklet.**

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Question 6 is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.

Examiner only

(b) The names of some separation methods used in chemistry are given in the box.

evaporation	filtration	chromatography
distil	lation cr	ystallisation

A sample of sea water contains sand and salt solution.

Choose from the box the $\ensuremath{\textit{most suitable}}$ method to collect

sand from salt solution	
water from salt solution	
salt from salt solution	

5

[3]

C410U201 03

(a) Give the name of gas **X** and gas **Y**.

Gas X	
Gas Y	

4

[2]

- 0
- (b) They predict that gas **Z** is either carbon dioxide or ammonia.
 - (i) Complete the table to describe the additional tests they would need to carry out to identify each of these gases. [2]

Gas	Test they would carry out	Expected observation
carbon dioxide		goes milky
ammonia	add damp red litmus paper	

(ii) The following diagrams show the arrangement of atoms in different gases.

Give the letter of the diagram that represents

carbon dioxide

ammonia

C410U201 05

Examiner only

6

[2]

Examiner only

3. (*a*) A series of experiments was carried out to investigate the effect of different factors on the reaction between calcium carbonate and hydrochloric acid. The diagram shows the apparatus used to collect results.

The time taken to collect $50 \, \text{cm}^3$ of carbon dioxide gas in each experiment is shown in the table.

Experiment	Temperature of hydrochloric acid (°C)	Concentration of hydrochloric acid (mol/dm ³)	Time taken to collect 50 cm ³ of gas (s)
1	40	1	92
2	40	0.5	185
3	60	1	38

Give the numbers of the two experiments that should be compared to show the effect of changing concentration on the time taken. Describe what these results show.

Experiments and

Examiner Give two factors relating to the calcium carbonate that should be kept the same to ensure a fair test. [2]

Assuming that a fair test was carried out, place a tick (\checkmark) in the box of the graph (iii) that shows how temperature affects the volume of gas collected over time for this reaction. [1]

(ii)

C410U201 07

only

10

Turn over.

(C410U20-1)

Examiner only 4. In a class practical, Isobel demonstrated how copper can be extracted from copper(II) (a) oxide using carbon. The apparatus used and equation for the reaction are shown below. boiling tube mixture of copper(II) oxide and carbon Bunsen burner copper(II) oxide carbon carbon dioxide copper + 2CuO(s) + C(s) $CO_2(g)$ 2Cu(s) +State which substance is being reduced during Isobel's experiment. How does the (i) equation show this? [2] (ii) Isobel was able to predict correctly which pairs of powders would react when heated strongly. Tick (\checkmark) the box next to **each** pair that would react. [2] copper and magnesium oxide carbon and aluminium oxide carbon and iron oxide gold and copper oxide

magnesium and copper oxide

- Examiner only
- (b) Metals are extracted from compounds found in their ores. These compounds are often oxides or sulfides of the metals. The percentage by mass of different metals in their compounds is given in the following table.

Name of ore	Formula of metal compound	Relative formula mass of compound	Percentage by mass of metal in compound (%)
haematite	Fe ₂ O ₃	160	70.0
galena	PbS	239	86.6
sphalerite	ZnS	97	67.0
chalcocite	Cu ₂ S	?	?

Calculate the percentage by mass of copper in Cu_2S and compare this value to the percentage by mass of the other metals in their compounds. [3]

$$A_{\rm r}({\rm Cu}) = 63.5$$
 $A_{\rm r}({\rm S}) = 32$

Percentage by mass = %

.....

Examiner only

5. A student investigated the reaction between copper and silver nitrate solution.

(a) The student wanted to test the following hypothesis:

"the mass of silver that forms will increase as time increases"

The results below show the mass of silver formed when a 10 cm copper rod was placed in 25 cm^3 of silver nitrate solution for different amounts of time.

Time (minutes)	Mass of silver formed (g)			
	Result 1	Result 2	Result 3	Mean
1	0.08	0.10	0.06	0.08
2	0.14	0.15	0.16	0.15
3	0.25	0.23	0.27	0.25
4	0.39	0.31	0.33	0.32
5	0.40	0.38	0.33	0.39

- (i) Circle the **two** results that were not used in calculating mean values. [1]
- (ii) State how the results for 2 minutes show the best repeatability.

[1]

© WJEC CBAC Ltd.

(C410U20-1)

Turn over.

- 14
- *(b)* The silver can be collected from the reaction mixture by carefully washing it from the copper rod. The mixture can then be filtered, washed and dried.
 - (i) Give **one** reason why this method could lead to the recorded mass being lower than the expected value. [1]

(ii) Give **one** reason why this method could lead to the recorded mass being higher than the expected value. [1]

(c) To extend the investigation, the student decided to test another hypothesis:

"as the length of the copper rod increases, the mass of silver deposited also increases"

(i) Complete the table to identify the independent and dependent variable to test this hypothesis. [1]

Variable	Description
independent variable	
dependent variable	

(ii) Give one control variable that would enable the students to collect valid data. [1]

11

Examiner only

Examiner only Solutions of sodium sulfate, sodium bromide and sodium carbonate are all colourless. 6. How effective are the following tests in distinguishing between these compounds? flame test • add hydrochloric acid • add silver nitrate solution • add sodium hydroxide solution • Include expected observations throughout your answer. [6 QER]

|Examiner only **SECTION B** Read the article in the **Resource Booklet** and answer all the questions that follow. 7. Refer to Figure 1. Identify the functional group common to all alcohols. [1] (a) Propanol is another alcohol. Draw its displayed formula and give its molecular formula. (b) [2] **Displayed** formula Molecular formula Use the information to calculate how many million barrels of ethanol were produced in (C) Brazil in 2010. [3] million barrels (d) Give the reason why the data collected using the equipment in Figure 4 gives a smaller energy content value for ethanol than that shown in Figure 5. State how the experiment could be improved to give a value closer to the actual value. [2]

END OF PAPER

15

only

For continuation only.	Examiner only

18

POSITIVE IONS		NEGATIVE IONS	
Name	Formula	Name	Formula
aluminium	Al ³⁺	bromide	Br ⁻
ammonium	NH4 ⁺	carbonate	CO ₃ ²⁻
barium	Ba ²⁺	chloride	CI-
calcium	Ca ²⁺	fluoride	F
copper(II)	Cu ²⁺	hydroxide	OH⁻
hydrogen	H⁺	iodide	1-
iron(II)	Fe ²⁺	nitrate	NO ₃ ⁻
iron(III)	Fe ³⁺	oxide	O ²⁻
lithium	Li ⁺	sulfate	SO4 ²⁻
magnesium	Mg ²⁺		
nickel	Ni ²⁺		
potassium	K ⁺		
silver	Ag ⁺		
sodium	Na ⁺		
zinc	Zn ²⁺		

FORMULAE FOR SOME COMMON IONS

				1	1			1
	0	⁴ Helium	20 Neon 10	40 Ar 18	84 Krypton 36	131 Xenon 54	222 Rn Radon 86	
	~		19 F Fluorine 9	35.5 CI Chlorine	80 Br Bromine 35	127 lodine 53	210 At Astatine 85	
	9		16 O Sygen 8	32 Sulfur 16	79 Selenium 34	128 Te Tellurium 52	210 PO 84	
	Ŝ		14 Nitrogen 7	31 Phosphorus 15	75 As Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth 83	
	4		12 C Carbon 6	28 Silicon 14	73 Germanium 32	119 Sn 50	207 Pb Lead 82	
	ი		11 Boron 5	27 Al Aluminium 13	70 Gallium 31	115 In 149	204 TI Thallium 81	
щ				1	65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80	
LABL					63.5 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79	
DIC					59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	
RIO					59 Co Cobalt	103 Rh Rhodium 45	192 Ir Iridium 77	
EPE	dno	Ц]		56 Fe Iron 26	101 Ruthenium 44	190 Osmium 76	Key
Ŧ	Gro	Hydroge			55 Mn Manganese 25	99 TC Technetium	186 Re Rhenium 75	
					52 Cr Chromium 24	96 MO Molybdenum 42	184 W Tungsten 74	
					51 V Vanadium 23	93 Nobium 41	181 Ta Tantalum 73	
					48 Ti Z2	91 Zr Zirconium 40	179 Hf Hafnium 72	
					45 Sc 21	89 Yttrium 39	139 La Lanthanum 57	227 Ac Actinium 89
	2		9 Beryllium 4	24 Mg 12	40 Ca Calcium 20	88 Strontium 38	137 Ba Barium 56	226 Ra Radium 88
	-		7 Li Lithium 3	23 Na Sodium	39 A Potassium 19	86 Rb Rubidium 37	133 CS Caesium 55	223 Fr Francium 87

Ar Symbol Z atomic mass

© WJEC CBAC Ltd.

(C410U20-1)