GCSE MARKING SCHEME

SUMMER 2018

GCSE

CHEMISTRY - COMPONENT 1

C410U10-1
C410UA0-1

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCSE CHEMISTRY COMPONENT 1: Concepts in Chemistry
 MARK SCHEME
 GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.
One tick must equate to one mark (apart from the questions where a level of response mark scheme is applied).
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Marking rules

All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked.
Credit will be given for correct and relevant alternative responses which are not recorded in the mark scheme.

Extended response question

A level of response mark scheme is used. Before applying the mark scheme please read through the whole answer from start to finish. Firstly, decide which level descriptor matches best with the candidate's response: remember that you should be considering the overall quality of the response. Then decide which mark to award within the level. Award the higher mark in the level if there is a good match with both the content statements and the communication statements.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao	$=$ correct answer only
ecf	$=$ error carried forward
bod	$=$ benefit of doubt

Foundation Tier only questions

Question				Marking details	Marks available						
				A01	AO2	AO3	Total	Maths	Prac		
2	(a)	(i)	I		B all correct (2) C any one correct (1) A	2			2		2
			II	step B use up the acid / neutralise the acid / form zinc chloride (1) step C remove (unreacted) zinc carbonate (1) step A remove / evaporate water (1)	3			3		3	
		(ii)		$\mathrm{ZnCl}_{2} \quad \checkmark$		1		1			
		(iii)		zinc / zinc oxide / zinc hydroxide accept $\mathrm{Zn} / \mathrm{ZnO} / \mathrm{Zn}(\mathrm{OH})_{2}$	1			1			
	(b)	(i)		3			1	1		1	
		(ii)		red and blue - both needed			1	1		1	
		(iii)		$0.43 / 0.4$ if answer incorrect award (1) for $\frac{3}{7}$		2		2	1		
		(iv)		dots at 'red' and 'yellow' positions - both needed			1	1		1	
				Question 2 total	6	3	3	12	1	8	

Question			Marking details		Marks available							
			A01	AO2	AO3	Total	Maths	Prac				
3	(a)	(i)				mass of iron per gram $0.10 / 0.1$ mass of iron per kilogram $100 \quad$ (1)		2		2	2	
		(ii)		C (1) ecf possible if answer > 120 given in part (i) produces the most iron (1)			2	2				
		(iii)		83 (2) if answer incorrect award (1) for $\frac{29}{35} / 82.86 / 82.857 / 82.9$	1	1		2	2			
	(b)			air/oxygen and water are needed for rusting to take place (1) salt speeds up rusting (1)			2	2		2		
	(c)			painting stops air and/or water (getting to iron) (1) sacrificial protection zinc above iron in reactivity series / zinc more reactive than iron (1) zinc corrodes instead of iron / zinc corrodes before iron (1) do not accept reference to 'zinc rusts instead of iron’	3			3				
	(d)			$\mathrm{Fe}_{2} \mathrm{O}_{3}$		1		1				
				Question 3 total	4	4	4	12	4	2		

Question				Marking details	Marks available						
				A01	AO2	AO3	Total	Maths	Prac		
4	(a)				C (1) (measuring cylinder) is graduated / scaled (1)	1	1		2		2
	(b)	(i)		all points plotted correctly (2) tolerance $\pm 1 / 2$ square any seven points plotted correctly (1) smooth curve through all points (1)		2	1	3	3		
		(ii)	1	36 ± 0.5 ecf possible - accept correct reading reading from graph		1		1	1		
			II	3 ± 0.5 ecf possible - accept correct reading reading from graph		1		1	1		
	(c)			increased rate / faster reaction (1) bigger surface area (1) greater chance of collision (1)	3			3			
	(d)			$\begin{equation*} =94.6 \quad \checkmark \tag{1} \end{equation*}$ no substance(s) have left or entered the flask/apparatus (1)	1	1			1	1	
				Question 4 total	5	6	1	12	6	3	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
5	(a)			ethane and ethene (1) both needed, either order (both contain) hydrogen and carbon only (1)	2			2		
	(b)		methanol and ethanol (1) both needed, either order alcohol(s) (1)	2			2			
	(c)		ethanol	1			1			
	(d)		ethene (1) double bond opens / breaks (1) (ethene molecules) join together / single molecule formed / forms a polymer (1)	3			3			
			Question 5 total	8	0	0	8	0	0	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
6	(a)	(i)		A carbon dioxide / CO_{2} (1) B chlorine / Cl_{2} (1) C ammonia / NH_{3}			3	3		3
		(ii)	D sodium chloride / NaCl E potassium carbonate $/ \mathrm{K}_{2} \mathrm{CO}_{3}$ F calcium iodide / Cal_{2} award (3) for all six ions correct award (2) for four/five ions correct award (1) for two/three ions correct			3	3		3	
	(b)		$\begin{aligned} & 2 \mathrm{NaCl}+\mathrm{BaSO}_{4} \\ & \text { if incorrect award (1) for } \mathrm{BaSO}_{4} \end{aligned}$		2		2	1		

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
7	(a)	(i)		$\begin{array}{ll} \mathrm{Li}^{+} & \text {both boxes (1) } \\ 2,8,8 & \text { (1) } \end{array}$		2		2		
		(ii)	electrostatic	1			1			
		(iii)	$\mathrm{Li}_{2} \mathrm{~S}$		1		1			
	(b)	(i)	C		1		1			
		(ii)	covalent	1			1			
			Question 7 total	2	4	0	6	0	0	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
8	(a)	(i)		temperature goes down / endothermic reaction (1) the greater the mass added, the greater the change (1)			2	2		1
		(ii)	A		1		1			
		(iii)	(electronic) balance accept 'scales'	1			1		1	
	(b)	(i)	80 (2) if answer incorrect award (1) for $14+4+14+48$		2		2	2		
		(ii)	35 (2) ecf possible from part (i) if answer incorrect award (1) for $\frac{28}{80}$		2		2	2		
	(c)	(i)	$85.0 / 85$ (2) if answer incorrect award (1) for $\frac{101}{109} / 84.87 / 84.9 / 84.874$		2		2	1		
		(ii)	uses less natural resources (1) forms less waste (1)	2			2			
			Question 8 total	3	7	2	12	5	2	

Question			Marking details	Marks available						
			AO1	AO2	AO3	Total	Maths	Prac		
9	(a)	(i)		$0.08 \quad(2)$ if answer incorrect award (1) for $\frac{\text { total }}{4}$		2		2	2	
		(ii)	award (1) for any of following - magnesium oxide lost (during burning) - magnesium oxide smoke escapes - not all the magnesium has reacted - product escapes / lost do not accept 'incorrect readings'			1	1		1	
	(b)	(i)	award (1) for any appropriate y and x values e.g. 0.3 and 0.2 accept workings on graph $\begin{equation*} \frac{y}{x} \text { value }=1.5 \tag{1} \end{equation*}$		2		2	2		
		(ii)	0.4			1	1	1		
			Question 9 total	0	4	2	6	5	1	

Common questions

Question				Marking details	Marks available						
				A01	AO2	AO3	Total	Maths	Prac		
12/3	(a)	(i)	I		$4 \mathrm{Li}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Li}_{2} \mathrm{O}$		1		1		
			II	30 do not accept 60		1		1			
			III	stored in oil / stored in liquid paraffin do not accept 'paraffin'	1			1		1	
		(ii)	1	products $\mathrm{LiOH}+\mathrm{H}_{2} \quad(1)$ balancing $\mathbf{2 (L i O H)} \quad(1)$		2		2			
			II	purple (1) accept 'blue' (strong) alkali (1)	2			2		2	
		(iii)		```2Li + Cl2 }->2\textrm{LiCl reactants and product (1) balancing (1) reactants and product must be correct before awarding balancing mark```		2		2			
	(b)			$\mathrm{Li}_{2} \mathrm{CO}_{3}$		1		1			
				Question 12/3 total	3	7	0	10	0	3	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
4	(a)	(i)		products $\mathrm{Fe}+\mathrm{CO}_{2} \quad$ (1) balancing $\mathbf{2}(\mathrm{Fe})+\mathbf{3}\left(\mathrm{CO}_{2}\right) \quad$ (1) products must be correct before awarding balancing mark		2		2		
		(ii)	iron(III) oxide loses oxygen / Fe^{3+} ions gain electrons (forming iron)	1			1			
	(b)		neutralisation / acid-base reaction (1) CaO is a base/alkali and SiO_{2} is an acid (1)	2			2			
	(c)		limestone is heated (1) (limestone) breaks down / undergoes decomposition (1) calcium carbonate \equiv limestone award (2) for 'thermal decomposition of limestone'	2			2		2	
	(d)		to heat up in-going air	1			1			
			Question 4 total	6	2	0	8	0	2	

Question				Marking details	Marks available						
				A01	AO2	AO3	Total	Maths	Prac		
5	(a)	(i)			$\mathrm{C}=\mathrm{C} \quad$ (1) accept 'alkene' (1) ignore ' n ' and brackets	2			2		
		(ii)	1	award (1) for dimer and (1) for water	2			2			
			II	two (different) functional groups at ends of each monomer (1) functional groups react / join (1) repeating unit contains both monomers small molecule / $\mathrm{H}_{2} \mathrm{O}$ also formed (1)	4			4			

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(b)	()		credit possible for any choice credit points relating to one material only award (1) each for any of following plastic bottle - low/lowest CO_{2} emission therefore less/least effect on global warming - light/lightest therefore fewer trucks and least effect on global warming - 100% of bottles recyclable therefore sustainable OR aluminium - comparable CO_{2} emission to plastic therefore low effect on global warming - no degradation to properties therefore can be re-used for same purpose - high / 70% recyclable therefore nearly sustainable - least time to break down - relatively low mass therefore fewer trucks and less effect on global warming OR glass - readily available raw materials - no degradation of properties - re-usable			3	3		
		Question 5 total	8	0	3	11	0	0	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
8	(a)	(i)		award (1) for each of the following - electron transfer - correct charges - octet around oxygen / electronic structure for both ions		3		3		
		(ii)	four electrons in intersection (1) octet around each atom (1)		2		2			
		(iii)	calcium oxide has strong (electrostatic) forces between ions / strong ionic bonding (1) oxygen has weak intermolecular forces (1)	2			2			
	(b)		delocalised electrons / sea of electrons / free electrons (1) electrons can move / mobile electrons / electrons carry charge from place to place (1)	2			2			
			Question 8 total	4	5	0	9	0	0	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
9	(a)			energy absorbed in bond breaking $=4728 \quad$ (2) if incorrect award (1) for $[5(413)+347+358+464+3(498)]$ energy released in bond making $=6004 \quad$ (2) if incorrect award (1) for $[4(805)+6(464)]$ overall energy change $=1276 \quad$ (1) \quad accept -ve value ecf possible		5		5	5	
	(b)			1			1			
	(c)		as the number of carbon atoms (present in an alcohol) increases the (overall relative) energy change increases (1) the increase is linear / proportional accept description e.g. for every additional carbon atom the energy increases by 618 / approximately 600 positive correlation - neutral answer			2	2	2		
			Question 9 total	1	5	2	8	7	0	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
10	(a)			cooling between heating and adding acid / time delay in adding acid do not accept 'adding cold acid'	1			1		1
	(b)		$\begin{aligned} & 2 \mathrm{~cm} \equiv 10^{\circ} \mathrm{C} \\ & 2 \mathrm{~cm} \equiv 10 \times 10^{-3} \mathrm{~s}^{-1} \end{aligned}$ (1) both needed all five readings plotted correctly (2) tolerance $\pm 1 / 2$ square any three readings plotted correctly (1) smooth curve of best fit (1)		3	1	4	4	4	
	(c)	(i)	award (1) for rate read from graph at any temperature award (1) for second rate read at temperature $10^{\circ} \mathrm{C}$ higher / lower e.g. rate at $20^{\circ} \mathrm{C}$ is 4×10^{-3} and rate at $30^{\circ} \mathrm{C}$ is 8×10^{-3}		2		2	2	2	
		(ii)	$\begin{align*} & \text { at } 70^{\circ} \mathrm{C} \text { rate }=128 \times 10^{-3} \\ & 1 / \mathrm{t}=0.128 \tag{1}\\ & t=7.8 / 8 \mathrm{~s} \tag{1} \end{align*}$			3	3	3		
		(iii)	percentage error in timing is a large proportion of $5 \mathrm{~s} /$ delay in stopping stopwatch is a large proportion of 5 s human error / difficult to stop the watch quickly enough - neutral		1		1		1	
			Question 10 total	1	6	4	11	9	8	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
11	(a)	(i)		reaction in equilibrium will oppose any changes / (at high temperature) the system will move to decrease temperature / (at low pressure) the system will move to increase pressure (1) therefore move in endothermic reaction / move L to R (1) therefore move in direction of greater number of particles / move L to R (1)			3	3		
		(ii)	17.6 (2) answer must be given to 3 significant figures if answer incorrect award (1) for $\frac{6}{34} \times 100$	1	1		2	2		
		(iii)	$\begin{align*} & \frac{0.16}{16}=0.01 \tag{1}\\ & 0.01: 0.03 \tag{1}\\ & 0.03 \times 0.024=0.00072 / 7.2 \times 10^{-4} \mathrm{~m}^{3} \tag{1}\\ & \text { ecf possible } \end{align*}$		3		3	3		
	(b)		award (1) for each element and its benefit nitrogen / N strong growth / fast growth / more seeds / more fruit / better quality plants / helps photosynthesis / building proteins phosphorus / P helps roots grow / helps flowers grow / plant development / respiration potassium / K important for overall plant health / reduces disease	3			3			

Question				Marking details	Marks available						
				AO1	AO2	AO3	Total	Maths	Prac		
12	(a)	(i)	1		```moles of NaOH =0.0015 (1) ratio 0.00075:0.0015 conc'n of acid = 0.03 \\ alternative method \\ \(2 \times\) conc \(^{n}\) of acid \(\times\) vol of acid \(=\) conc \(^{n}\) of alkali \(\times\) vol of alkali \\ \(2 \times\) conc \(^{n}\) of acid \(\times 25=0.1 \times 15\) \\ conc \(^{\text {n }}\) of acid \(=0.03\) \\ ecf possible throughout```		3		3	3	
			II	1.86 ecf possible from part I		1		1	1		
		(ii)		malic acid / other acids in apple juice (will also neutralise the alkali)			1	1			

FOUNDATION TIER
SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	TOTAL MARK	MATHS	PRAC
1	6	0	2	8	2	0
2	6	3	3	12	1	8
3	4	4	4	12	4	2
4	5	6	1	12	6	3
5	8	0	0	8	0	0
6	2	4	8	14	1	12
7	2	4	0	6	0	0
8	3	7	2	12	5	2
9	0	4	2	6	5	1
10	2	8	0	10	0	0
11	6	2	2	10	2	4
12	3	7	0	10	0	3
TOTAL	47	49	24	120	26	35

HIGHER TIER

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	TOTAL MARK	MATHS	PRAC
1	2	8	0	10	0	0
2	6	2	2	10	2	4
3	3	7	0	10	0	3
4	6	2	0	8	0	2
5	8	0	3	11	0	0
6	0	0	5	5	1	5
7	0	2	7	9	2	6
8	4	5	0	9	0	0
9	1	5	2	8	7	0
10	1	6	4	11	9	8
11	10	4	3	17	5	6
12	4	7	1	12	5	0
TOTAL	45	48	27	120	31	34

EDUQAS GCSE Chemistry Component 1 MS Summer 2018/ED

