Surname
Other Names

Centre Number	Candidate Number

GCSE - NEW

S18-C410UA0-1

CHEMISTRY - Component 1:

Concepts in Chemistry

HIGHER TIER

THURSDAY, 17 MAY 2018 - MORNING

2 hours 15 minutes

ADDITIONAL MATERIALS

In addition to this paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all questions.
Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s)

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	10	
2.	10	
3.	10	
4.	8	
5.	11	
6.	5	
7.	9	
8.	9	
9.	8	
10.	11	
11.	17	
12.	12	
Total	120	

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
Question 11(c) is a quality of extended response (QER) question where your writing skills will be assessed.
The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.

Answer all questions.

1. (a) The table shows some information about particles found in atoms. Complete the table.

Particle	Relative mass	Relative charge
proton		+1
electron	negligible	\ldots
neutron	1	$0 \cdots \cdots$

(b) Complete the following table that shows information about atoms of some elements. [3]

Element	Mass number	Atomic number	Number of protons	Number of neutrons	Number of electrons
fluorine	19	9	9	10	
potassium	39	19		20	19
argon		18	18	22	18

(c) The following diagram shows an outline of part of the Periodic Table.

The letters shown are NOT the chemical symbols of the elements.

(i) Give the letter of the element in Group 2 and Period 3.
\qquad
(ii) Give the letter of the element which has 14 protons in its nucleus.
\qquad
(d) The diagram shows the electronic structure of an element in the Periodic Table.

Draw the diagram which shows the electronic structure of the element which lies directly below it.
(e) The definition of an element is:

> "a substance that cannot be broken down into simpler substances by chemical methods".

In the 1700s a chemist named Antoine Lavoisier attempted to arrange substances in a pattern. The table shows some of the 'substances' which Lavoisier thought were elements. He divided the 'substances' into four groups. He published these groups in 1789. The modern names of some of the 'substances' are given in brackets.

Acid-making elements	Gas-like elements	Metallic elements	Earthy elements
sulfur	light	mercury	lime (calcium oxide)
phosphorus charcoal (carbon)	caloric (heat) oxygen	copper	nickel
(magnesium oxide)			
azote			
(nitrogen)	gold	barites (barium sulfate)	
	hydrogen	iron	silex (silicon dioxide)

(i) Name one 'substance' in the table which is not a chemical element or compound.
\qquad
(ii) The 'earthy elements' are now known as compounds. Suggest why Lavoisier thought they were elements.
[1]
\qquad

BLANK PAGE

2. (a) The following apparatus is used to show the electrolysis of water.

(i) Choose the letter of the graph which shows the relationship between the volume of hydrogen and the volume of oxygen formed during the process. Give the reason for your choice.

Letter \qquad
Reason
(ii) Explain the movement of H^{+}ions and OH^{-}ions during the process.
\qquad
\qquad
\qquad
\qquad
(iii) Complete the equation by drawing diagrams to represent all the molecules formed.

(b) The table below shows the symbols of the ions present in three electrolytes and the products formed during their electrolysis. Complete the table.

Electrolyte	Symbol of ions present in electrolyte		Name of product formed	
	Positive ion(s)	Negative ion(s)	At the cathode $(-)$	At the anode (+)
molten lead(II) iodide	$\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots$	$\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots$	lead	iodine
aqueous copper(II) sulfate	$\mathrm{Cu}^{2+} \mathrm{H}^{+}$	$\mathrm{SO}_{4}{ }^{2-} \mathrm{OH}^{-}$		oxygen
aqueous lithium chloride	$\mathrm{Li}^{+} \mathrm{H}^{+}$	$\mathrm{Cl}^{-} \mathrm{OH}^{-}$	hydrogen	

3. (a) The diagram shows three reactions of lithium.

(i) \quad Balance the symbol equation for reaction 1.

II Calculate the relative formula mass $\left(M_{\mathrm{r}}\right)$ of lithium oxide.

$$
A_{\mathrm{r}}(\mathrm{Li})=7 \quad A_{\mathrm{r}}(\mathrm{O})=16
$$

$$
M_{r}=
$$

III Describe how reaction 1 is prevented from happening when storing lithium in the laboratory.
(ii) \quad Complete and balance the symbol equation for reaction 2.

$$
2 \mathrm{Li}+2 \mathrm{H}_{2} \mathrm{O}
$$

\qquad
\qquad $+$ \qquad

II Explain the colour seen when a few drops of universal indicator are added to the solution formed in reaction 2.
\qquad
(iii) Write a balanced symbol equation for reaction 3 .
\qquad
(b) Give the chemical formula of lithium carbonate.
\qquad

[^0]
(a) (i) Complete and balance the symbol equation for reaction 3.
$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \longrightarrow
$$
\qquad $+$ \qquad
(ii) Use this reaction to explain the term reduction.
(b) Give the type of reaction taking place in the formation of slag. Give a reason for your
answer.
[2]

Examiner only
(c) Explain how calcium oxide is formed in the furnace.
\qquad
(d) Suggest how the cost of the process is reduced by using some of the waste gases. [1]
5. (a) Polymers are very large molecules made when many smaller molecules join together, end to end. The smaller molecules are called monomers. The process of small monomers joining together is called polymerisation. There are two types of polymerisation.
(i) Monomer \mathbf{A} undergoes addition polymerisation. Complete the table.

Monomer A	Functional group needed for addition polymerisation	Repeating unit

(ii) I Monomers B and \mathbf{C} can undergo a condensation reaction.

Complete the diagram by showing how these two molecules join together forming two products.

I Explain, using monomers \mathbf{B} and \mathbf{C}, the principles of condensation polymerisation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^1]| | Plastic bottle (PET) | Glass bottle | Aluminium can |
| :---: | :---: | :---: | :---: |
| Raw material(s) | petroleum | sand, sodium
 carbonate and
 limestone | bauxite |
| Mass of carbon
 dioxide emitted per
 container during
 production (g) | 142 | 226 | 168 |
| Mass of 330 ml
 container (g)
 (mass impacts on
 truckload size and
 therefore fuel use) | 11 | 200 | 24 |
| | 25% recycled into
 new bottles | 40\% recycled into
 new bottles | 70% recycled into
 new cans |
| Recycling | lis recycled into
 other products such
 as wheelie bins
 and eco-fleece due
 to degradation in
 properties | no degradation of
 properties therefore
 can be recycled
 indefinitely | no degradation of
 properties therefore
 can be recycled
 indefinitely |
| Time to break down
 in the environment | 400 years | 400 years | 80 years |

Use the information from the table to state which material in your opinion has the least environmental impact.

Give three pieces of evidence to support your choice.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
6. (a) The following tests were used to identify unknown compounds \mathbf{A}, \mathbf{B} and \mathbf{C}.
add silver nitrate solution
add dilute hydrochloric acid, flame test
add sodium hydroxide solution
add sodium hydroxide solution and warm mixture, test gas given off with damp litmus paper

These are described below as tests $\mathbf{1}$ to 5 but not necessarily in that order.
The charts show the results obtained for each compound.

Deduce which test is which and hence identify compounds A, B and C.
A
B \qquad

C \qquad
(b) Colourless aqueous solutions of amino acids can be separated by paper chromatography. Spots appear when the paper is sprayed with a 'locating agent'.

The table shows the R_{f} values for some amino acids.

Amino acid	R_{f} value
glycine	0.25
alanine	0.40
valine	0.70
proline	0.45
serine	0.30
lysine	0.15
cysteine	0.10

A student was given the chromatogram of a mixture of two unknown amino acids.

Use the information given to identify the two unknown amino acids in the mixture.
\qquad

BLANK PAGE

7. (a) Gareth and Caroline investigated the displacement reaction between iron filings and copper(II) sulfate solution. The equation for the reaction is as follows.

$$
\mathrm{Fe}(\mathrm{~s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{FeSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s})
$$

Both students carried out the following procedure.
0.56 g of iron fillings were added to excess aqueous copper(II) sulfate. Once all the iron filings had reacted, the copper formed was filtered, dried and weighed accurately.

The mass of copper expected was 0.64 g .
(i) Gareth obtained a value of 0.71 g . Suggest one possible reason for the higher than expected mass. State how this problem could be overcome.
\qquad
\qquad
(ii) Caroline obtained a value of 0.61 g . Suggest one possible reason for the lower than expected mass. State how this problem can be overcome.
(b) The students were asked to find the relative positions in the reactivity series of four unknown metals, A, B, C and D.

Gareth measured the voltage formed in a simple chemical cell. He paired metals A,B and \mathbf{C} in turn with metal \mathbf{D}. Metal \mathbf{D} is the least reactive of the metals. The voltage formed by each pair of metals is shown in the table.

In a chemical cell, the further apart the electrode metals are in the reactivity series the greater the voltage generated.

Caroline carried out a series of displacement reactions. She added metals A, B, C and D to separate solutions containing the nitrate of a different metal ion.

Complete the table below to show the results that would support Gareth's evidence.
Use a tick (\checkmark) to show that a reaction occurs and a cross (x) to show that no reaction occurs.

Metal	Metal nitrate solution			
	metal A nitrate	metal B nitrate	metal C nitrate	metal D nitrate
A				
B				
C				
D				

(c) Suggest a reason why Gareth's is a better method than Caroline's for finding the relative positions of metals in the reactivity series.
(d) Metal \mathbf{D} has two main isotopes, ${ }^{63} \mathbf{D}$ and ${ }^{65} \mathbf{D}$.

A sample of metal D contains $70 \%{ }^{63} \mathbf{D}$ atoms and $30 \%{ }^{65} \mathbf{D}$ atoms.
Calculate the relative atomic mass $\left(A_{r}\right)$ of metal \mathbf{D} to three significant figures.

$$
A_{\mathrm{r}}=
$$

\qquad
\qquad

Call
\qquad
8. (a) (i) Calcium reacts with oxygen to form calcium oxide.

Using the electronic structures below, draw dot and cross diagrams to explain the bonding in calcium oxide. Show only outer shell electrons in your diagrams.
oxygen 2,6
(ii) Complete the diagram showing the outer shell electrons in an oxygen molecule, O_{2}.

(iii) Calcium oxide has an ionic structure and melts at $2572^{\circ} \mathrm{C}$. Oxygen has a simple covalent structure and melts at $-219^{\circ} \mathrm{C}$.

Explain the difference in the melting points of calcium oxide and oxygen.
\qquad
\qquad
\qquad
(b) The diagram shows the structure of metallic silver.

Explain why silver conducts electricity.
[2]

\qquad
\qquad
9. Alcohols can be used as fuels. Table 1 shows the first five members of the alcohol homologous series. The theoretical values for the energy released when alcohols are burned are also shown. The value for ethanol is missing.

Alcohol	Molecular formula	Energy released (kJ)
methanol	$\mathrm{CH}_{3} \mathrm{OH}$	658
ethanol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	
propanol	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$	1894
butanol	$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$	2512
pentanol	$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}$	3130

Table 1

The energies of the bonds broken and formed as alcohols burn are shown in Table 2.

Bond	Bond energy (kJ)
$\mathrm{O}-\mathrm{H}$	464
$\mathrm{C}-\mathrm{C}$	347
$\mathrm{C}-\mathrm{H}$	413
$\mathrm{C}-\mathrm{O}$	358
$\mathrm{C}=\mathrm{O}$	805
$\mathrm{O}=\mathrm{O}$	498

Table 2

The following equation shows the rearrangement of atoms as ethanol burns.

$\mathrm{O}=\mathrm{O}$

$+$
$\mathrm{O}=\mathrm{O}$
\longrightarrow

$\mathrm{O}=\mathrm{O}$ $\mathrm{O}=\mathrm{C}=\mathrm{o}$
$+$

(a) Calculate the energy released for the burning of ethanol.
(b) Draw an arrow (\uparrow) on the reaction profile to show the energy change calculated in part (a).

(c) Use your answer to part (a) and the information from Table 1 to describe the relationship between the number of carbon atoms present in an alcohol and the energy released on burning.
\qquad
\qquad
\qquad
10. Sodium thiosulfate solution reacts with dilute hydrochloric acid forming a yellow precipitate. This reaction can be investigated using the 'disappearing cross' experiment.

$50 \mathrm{~cm}^{3}$ of sodium thiosulfate solution was heated in a water bath until a target temperature was reached. The flask was removed from the water bath and the actual temperature was recorded just before $10 \mathrm{~cm}^{3}$ of hydrochloric acid was added. A stopwatch was started immediately. The time taken for the cross to disappear was recorded. This procedure was repeated at different temperatures. The concentrations of the acid and the sodium thiosulfate solutions were kept the same in each experiment.

The results are shown below.

Target temperature $\left({ }^{\circ} \mathrm{C}\right)$	Actual temperature recorded $\left({ }^{\circ} \mathrm{C}\right)$	Time for cross to disappear (s)	Rate $1 /$ time $\times 10^{-3}$ $\left(\mathrm{~s}^{-1}\right)$
20	19	250	4
30	27	167	6
40	39	62	15
50	49	33	30
60	59	17	59

(a) Suggest a reason for the difference between the target temperature and the actual temperature recorded for each reaction.
(b) Choose appropriate scales and plot the rate against the actual temperature recorded on the grid. Draw a suitable line.
Rate
$1 /$ time $\times 10^{-3}$
$\left(\mathrm{s}^{-1}\right)$

Temperature (${ }^{\circ} \mathrm{C}$)
(c) (i) The following relationship is given in many text books.
"The rate of a reaction doubles for every $10^{\circ} \mathrm{C}$ rise in temperature."
Use your graph to show that this relationship is true.
Time =
(iii) At $80^{\circ} \mathrm{C}$ the reaction would take less than 5 seconds. Explain why the time recorded at $80^{\circ} \mathrm{C}$ would be a less accurate reading than at lower temperatures.

BLANK PAGE

11. (a) Most of the hydrogen used in the Haber process is obtained by reacting methane with steam.

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g})
$$

The forward reaction is endothermic.
(i) Explain why a high temperature and a low pressure would give the maximum yield of hydrogen.
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Calculate the atom economy for the manufacture of hydrogen using this reaction. Give your answer to three significant figures.

$$
A_{\mathrm{r}}(\mathrm{H})=1 \quad A_{\mathrm{r}}(\mathrm{C})=12 \quad A_{\mathrm{r}}(\mathrm{O})=16
$$

(iii) Calculate the maximum volume of hydrogen that could be formed at room temperature and pressure from 0.16 g of methane. The volume of 1 mol of gas at room temperature and pressure is $0.024 \mathrm{~m}^{3}$.

Give your answer in m^{3}.
(b) A three component fertiliser contains a mixture of ammonium nitrate, potassium chloride and ammonium phosphate.

Complete the table by identifying the three essential elements this fertiliser provides. State why each element is essential.

Element	Benefit to plants

(c) Phosphoric acid contains hydrogen ions $\left(\mathrm{H}^{+}\right)$and phosphate ions $\left(\mathrm{PO}_{4}{ }^{3-}\right)$.

Ammonium phosphate is manufactured by reacting ammonium hydroxide solution with phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$. Describe a titration method for making pure crystals of ammonium phosphate in the laboratory. Include an equation in your answer. [6 QER]
12. (a) The label shows the ingredients in 'Sparkling Apple Drink'.

Ingredients:
carbonic acid, apple juice, sugar, glucose syrup, malic acid, preservative (sodium benzoate), artificial sweetener (saccharin).

A student was asked to find the concentration of carbonic acid in 'Sparkling Apple Drink'. He decided to do this by titrating the drink against sodium hydroxide solution.
(i) He found that $25.0 \mathrm{~cm}^{3}$ of 'Sparking Apple Drink' was neutralised by $15.0 \mathrm{~cm}^{3}$ of sodium hydroxide solution of concentration $0.10 \mathrm{~mol} / \mathrm{dm}^{3}$. The relative formula mass of carbonic acid is 62 .

$$
\mathrm{H}_{2} \mathrm{CO}_{3}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{H}_{2} \mathrm{O}
$$

I Calculate the student's value for the concentration of carbonic acid in $\mathrm{mol} / \mathrm{dm}^{3}$.
\qquad $\mathrm{mol} / \mathrm{dm}^{3}$

II Write this concentration as a value in $\mathrm{g} / \mathrm{dm}^{3}$.
(ii) Suggest why the concentration of carbonic acid in 'Sparking Apple Drink' is actually less than that found by the student.
(b) The flow diagram shows some reactions of ethanoic acid.

| colourless solution of
 $\mathrm{CH}_{3} \mathrm{COONa}$
 and
 carbon dioxide gas | sodium
 carbonate | dilute
 ethanoic acid
 $\mathrm{CH}_{3} \mathrm{COOH}$ | magnesium | |
| :---: | :---: | :---: | :---: | :---: | | colourless solution |
| :---: |
| and |
| hydrogen gas |

(i) Name the product with the formula $\mathrm{CH}_{3} \mathrm{COONa}$.
\qquad
(ii) Write a balanced symbol equation for the reaction between ethanoic acid and magnesium.
\qquad
(c) Dilute ethanoic acid (pH 3) reacts less vigorously with magnesium than dilute hydrochloric acid (pH 1) of equal concentration. Explain the reason for this difference in behaviour.[3]
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

BLANK PAGE

For continuation only.

FORMULAE FOR SOME COMMON IONS

POSITIVE IONS		NEGATIVE IONS	
Name	Formula	Name	Formula
aluminium	Al^{3+}	bromide	Br^{-}
ammonium	$\mathrm{NH}_{4}{ }^{+}$	carbonate	$\mathrm{CO}_{3}{ }^{2-}$
barium	Ba^{2+}	chloride	Cl^{-}
calcium	Ca^{2+}	fluoride	F^{-}
copper(II)	Cu^{2+}	hydroxide	OH^{-}
hydrogen	H^{+}	iodide	I^{-}
iron(II)	Fe^{2+}	nitrate	$\mathrm{NO}_{3}{ }^{-}$
iron(III)	Fe^{3+}	oxide	O^{2-}
lithium	Li^{+}	sulfate	$\mathrm{SO}_{4}{ }^{2-}$
magnesium	Mg ${ }^{\text {2+ }}$		
nickel	Ni^{2+}		
potassium	K^{+}		
silver	Ag^{+}		
sodium	Na^{+}		
zinc	Zn^{2+}		

[^0]: Examiner
 4. Iron is extracted from its ore in the blast furnace. The diagram shows the main reactions occurring in the furnace.

[^1]: (b) When manufacturers produce soft drinks they often package the same product in different materials. Each type of disposable drink container has an environmental impact.

 Scientists carried out a life cycle assessment (LCA) for three different disposable drinks' containers. The table shows some information from the life cycle assessment.

