Surname	Centre Number	Candidate Number
Other Names		0

GCSE - NEW

C410UA0-1

CHEMISTRY – Component 1:

Concepts in Chemistry

HIGHER TIER

THURSDAY, 17 MAY 2018 - MORNING

2 hours 15 minutes

For Ex	aminer's us	e only
Question	Maximum Mark	Mark Awarded
1.	10	
2.	10	
3.	10	
4.	8	
5.	11	
6.	5	
7.	9	
8.	9	
9.	8	
10.	11	
11.	17	
12.	12	
Total	120	

ADDITIONAL MATERIALS

In addition to this paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

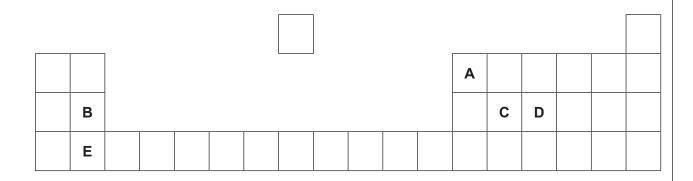
The number of marks is given in brackets at the end of each question or part-question.

Question $\mathbf{11}(c)$ is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.

Answer all questions.

1. (a) The table shows some information about particles found in atoms. Complete the table.

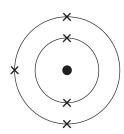

Particle	Relative mass	Relative charge
proton		+1
electron	negligible	
neutron	1	0

(b) Complete the following table that shows information about atoms of some elements. [3]

Element	Mass number	Atomic number	Number of protons	Number of neutrons	Number of electrons
fluorine	19	9	9	10	
potassium	39	19		20	19
argon		18	18	22	18

(c) The following diagram shows an outline of part of the Periodic Table.

The letters shown are NOT the chemical symbols of the elements.


(i)	Give the letter of the element in Group 2 and Period 3.	[1]

Give the **letter** of the element which has 14 protons in its nucleus. [1]

(d) The diagram shows the electronic structure of an element in the Periodic Table.

(ii)

.....

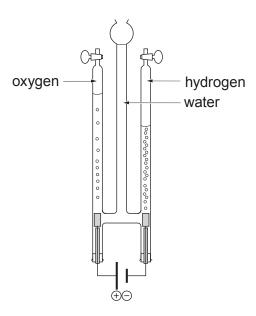
Draw the diagram which shows the electronic structure of the element which lies directly **below** it. [1]

(e) The definition of an element is:

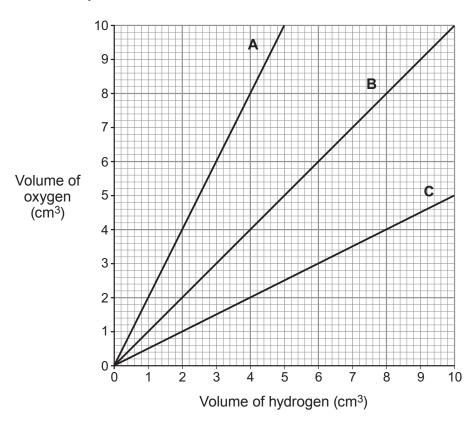
"a substance that cannot be broken down into simpler substances by chemical methods".

In the 1700s a chemist named Antoine Lavoisier attempted to arrange substances in a pattern. The table shows some of the 'substances' which Lavoisier thought were elements. He divided the 'substances' into four groups. He published these groups in 1789. The modern names of some of the 'substances' are given in brackets.

Acid-making elements	Gas-like elements	Metallic elements	Earthy elements
sulfur	light	mercury	lime (calcium oxide)
phosphorus	caloric (heat)	copper	magnesia
charcoal (carbon)	oxygen	nickel	(magnesium oxide)
(22.22.)	azote	gold	barites (barium sulfate)
	(nitrogen)	iron	silex
	hydrogen	zinc	(silicon dioxide)


(i)	Name one 'substance' in the table which is not a chemical element or compou	ınd.
.,		[1]

(ii)	The	'earthy	elements'	are	now	known	as	compounds.	Suggest	why	Lavoisier
	thou	ght they	were elem	ents	i.						[1]


10

BLANK PAGE

2. (a) The following apparatus is used to show the electrolysis of water.

(i) Choose the **letter** of the graph which shows the relationship between the volume of hydrogen and the volume of oxygen formed during the process. Give the reason for your choice. [2]

Letter

Reason

.....

© WJEC CBAC Ltd.

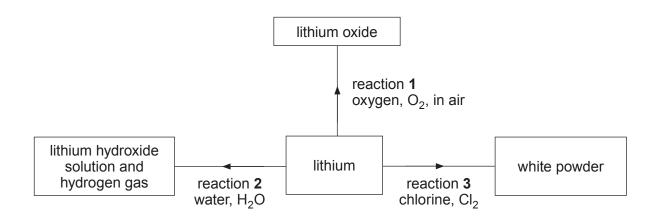
(C410UA0-1)

(ii)

Explain the **movement** of H⁺ ions and OH⁻ ions during the process.

[2]

***********										• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
•••••											
(iii)	Complete formed.	the	equation	by	drawing	diagrams	to	represe	ent all	the	molecules [2]
	water			-	hyd	rogen	+		oxyger	1	


(b) The table below shows the symbols of the ions present in three electrolytes and the products formed during their electrolysis. **Complete the table.** [4]

	Symbol of ions pro	esent in electrolyte	Name of product formed		
Electrolyte	Positive ion(s)	Negative ion(s)	At the cathode (-)	At the anode (+)	
molten lead(II) iodide			lead	iodine	
aqueous copper(II) sulfate	Cu ²⁺ H ⁺	SO ₄ ²⁻ OH ⁻		oxygen	
aqueous lithium chloride	Li ⁺ H ⁺	CI ⁻ OH ⁻	hydrogen		

10

© WJEC CBAC Ltd. (C410UA0-1) Turn over.

3. (a) The diagram shows three reactions of lithium.

(i) I Balance the symbol equation for reaction 1. [1]

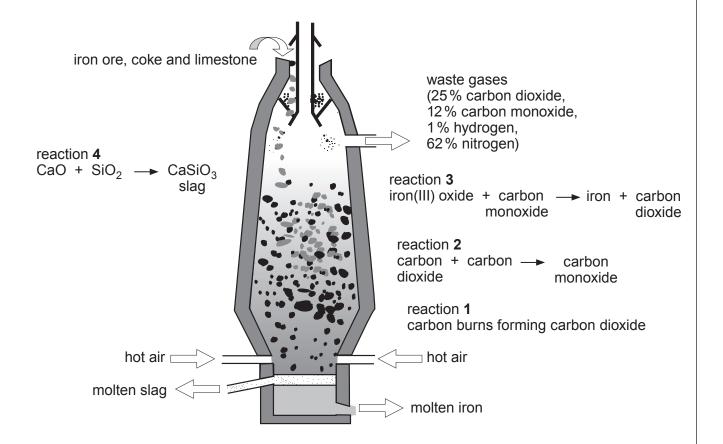
$$Li + O_2 \longrightarrow Li_2O$$

II Calculate the relative formula mass (M_r) of lithium oxide. [1]

$$A_{r}(Li) = 7$$
 $A_{r}(O) = 16$

M_r =

III Describe how reaction **1** is prevented from happening when storing lithium in the laboratory. [1]


Exam	ine
on	lv

	(ii)	I	Complete and balance the symbol equation for reaction 2.	[2]	
			2Li + 2H ₂ O → +		
		II	Explain the colour seen when a few drops of universal indicator are added the solution formed in reaction 2 .	d to [2]	
	(iii) 	Write	e a balanced symbol equation for reaction 3 .	[2]	
(b)	Give	the cl	hemical formula of lithium carbonate.	[1]	

C410UA01 09

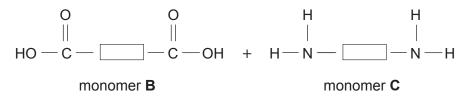
10

4. Iron is extracted from its ore in the blast furnace. The diagram shows the main reactions occurring in the furnace.

(a) (i) Complete and balance the symbol equation for reaction 3. [2] $Fe_2O_3 + 3CO \longrightarrow + \dots + \dots$ (ii) Use this reaction to explain the term reduction. [1]

(b)	Give the type of reaction taking place in the formation of slag. Give a reason for answer.		Examiner only
(c)	Explain how calcium oxide is formed in the furnace.	[2]	
(d)	Suggest how the cost of the process is reduced by using some of the waste gases.	[1]	

8


[2]

- **5.** (a) Polymers are very large molecules made when many smaller molecules join together, end to end. The smaller molecules are called monomers. The process of small monomers joining together is called polymerisation. There are two types of polymerisation.
 - (i) Monomer **A** undergoes addition polymerisation. Complete the table.

Monomer A	Functional group needed for addition polymerisation	Repeating unit
H $C = C$ H		

(ii) I Monomers **B** and **C** can undergo a condensation reaction.

Complete the diagram by showing how these two molecules join together forming two products. [2]

II Explain, using monomers **B** and **C**, the principles of condensation polymerisation. [4]

(b) When manufacturers produce soft drinks they often package the same product in different materials. Each type of disposable drink container has an environmental impact.

Scientists carried out a life cycle assessment (LCA) for three different disposable drinks' containers. The table shows some information from the life cycle assessment.

	Plastic bottle (PET)	Glass bottle	Aluminium can
Raw material(s)	petroleum	sand, sodium carbonate and limestone	bauxite
Mass of carbon dioxide emitted per container during production (g)	142	226	168
Mass of 330 ml container (g) (mass impacts on truckload size and therefore fuel use)	11	200	24
Recycling	25% recycled into new bottles 75% recycled into other products such as wheelie bins and eco-fleece due to degradation in properties	40% recycled into new bottles no degradation of properties therefore can be recycled indefinitely	70% recycled into new cans no degradation of properties therefore can be recycled indefinitely
Time to break down in the environment	400 years	400 years	80 years

Use the information from the table to state which material in your opinion has the least environmental impact. Give three pieces of evidence to support your choice [3]

and the process of artuches to support your entries.	[0]
	· · · · · · · · · · · · · · · · · · ·

11

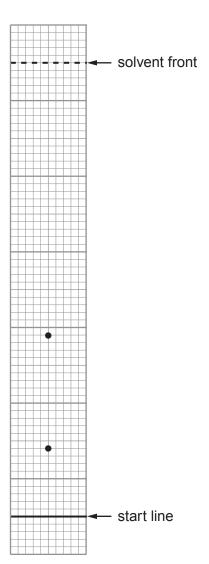
6. (a) The following tests were used to identify unknown compounds A, B and C.

add dilute hydrochloric acid, add silver nitrate solution flame test bubble gas given off into limewater add sodium hydroxide solution and warm mixture, add sodium hydroxide solution test gas given off with damp litmus paper These are described below as tests 1 to 5 but not necessarily in that order. The charts show the results obtained for each compound. pungent smelling Test 2 Test 1 gas given off compound gas given off turns which turns damp limewater milky litmus paper blue Test 4 Test 3 yellow precipitate brick-red coloured compound formed flame В Test 4 Test 5 blue precipitate compound cream precipitate formed C formed Deduce which test is which and hence identify compounds A, B and C. [3] A B

© WJEC CBAC Ltd. (C410UA0-1)

C

C410UAU 15


Examiner

(b) Colourless aqueous solutions of amino acids can be separated by paper chromatography. Spots appear when the paper is sprayed with a 'locating agent'.

The table shows the $R_{\rm f}$ values for some amino acids.

Amino acid	R _f value
glycine	0.25
alanine	0.40
valine	0.70
proline	0.45
serine	0.30
lysine	0.15
cysteine	0.10

A student was given the chromatogram of a mixture of two unknown amino acids.

Use the information	given to identify	the two unknown	amino acids in the mixture.	[2]

..... and

5

Turn over.

© WJEC CBAC Ltd.

(C410UA0-1)

BLANK PAGE

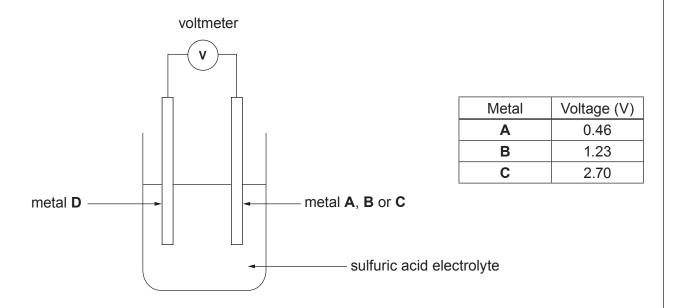
7. (a) Gareth and Caroline investigated the displacement reaction between iron filings and copper(II) sulfate solution. The equation for the reaction is as follows.

$$Fe(s) + CuSO_4(aq) \longrightarrow FeSO_4(aq) + Cu(s)$$

Both students carried out the following procedure.

0.56g of iron fillings were added to excess aqueous copper(II) sulfate. Once all the iron fillings had reacted, the copper formed was filtered, dried and weighed accurately.

The mass of copper expected was 0.64 g.


(i)	Gareth obtained a value of 0.71 g. Suggest one possible reason for the higher texpected mass. State how this problem could be overcome.	than [2]
······		
•••••		
(ii)	Caroline obtained a value of 0.61 g. Suggest one possible reason for the lower texpected mass. State how this problem can be overcome.	than [2]
•••••		

C410UA01

(b) The students were asked to find the relative positions in the reactivity series of four unknown metals, **A**, **B**, **C** and **D**.

Gareth measured the voltage formed in a simple chemical cell. He paired metals **A**, **B** and **C** in turn with metal **D**. Metal **D** is the least reactive of the metals. The voltage formed by each pair of metals is shown in the table.

In a chemical cell, the further apart the electrode metals are in the reactivity series the greater the voltage generated.

Caroline carried out a series of displacement reactions. She added metals **A**, **B**, **C** and **D** to separate solutions containing the nitrate of a different metal ion.

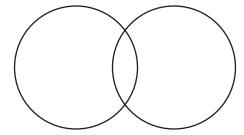
Complete the table below to show the results that would support Gareth's evidence. [2]

Use a tick (/) to show that a reaction occurs and a cross (x) to show that no reaction occurs.

Metal	Metal nitrate solution				
	metal A nitrate	metal B nitrate	metal C nitrate	metal D nitrate	
Α					
В					
С					
D					

	19	
(c)	Suggest a reason why Gareth's is a better method than Caroline's for finding the relative positions of metals in the reactivity series.	- 1
(d)	Metal D has two main isotopes, ⁶³ D and ⁶⁵ D . A sample of metal D contains 70 % ⁶³ D atoms and 30 % ⁶⁵ D atoms.	
	Calculate the relative atomic mass (A_r) of metal D to three significant figures. [2]	I
	$A_{r} = \dots$	
		9

© WJEC CBAC Ltd. (C410UA0-1) Turn over.

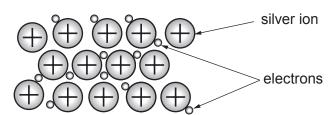

8.	(a)	(i)	Calcium reacts with oxygen to form calcium oxi	de.

Using the electronic structures below, draw dot and cross diagrams to explain the bonding in calcium oxide. Show only outer shell electrons in your diagrams. [3]

calcium 2,8,8,2

oxygen 2,6

(ii) Complete the diagram showing the outer shell electrons in an oxygen molecule, ${\rm O}_2.$



(iii) Calcium oxide has an ionic structure and melts at 2572 °C. Oxygen has a simple covalent structure and melts at -219 °C.

Explain the difference in the melting points of calcium oxide and oxygen. [2]

(b)

The diagram shows the structure of metallic silver.

Explain why silver conducts electricity.		

9

9. Alcohols can be used as fuels. **Table 1** shows the first five members of the alcohol homologous series. The theoretical values for the energy released when alcohols are burned are also shown. The value for ethanol is missing.

Alcohol	Molecular formula	Energy released (kJ)
methanol	CH ₃ OH	658
ethanol	C ₂ H ₅ OH	
propanol	C ₃ H ₇ OH	1894
butanol	C ₄ H ₉ OH	2512
pentanol	C ₅ H ₁₁ OH	3130

Table 1

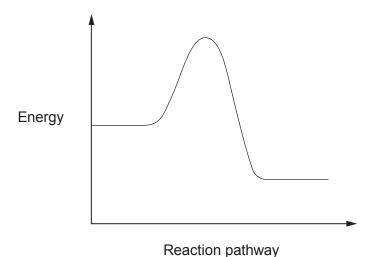
The energies of the bonds broken and formed as alcohols burn are shown in **Table 2**.

Bond	Bond energy (kJ)
О—Н	464
C—C	347
С—Н	413
C—O	358
c=o	805
0=0	498

Table 2

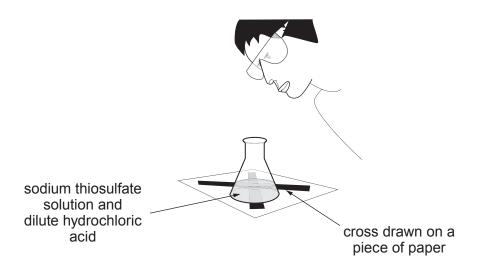
The following equation shows the rearrangement of atoms as ethanol burns.

© WJEC CBAC Ltd. (C410UA0-1)


(a) Calculate the energy released for the burning of ethanol.

Examiner only

[5]

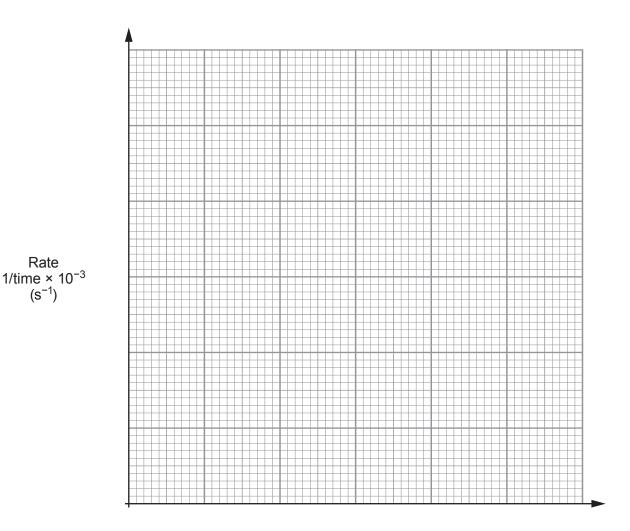

Energy released =kJ

(b) Draw an arrow (‡) on the reaction profile to show the energy change calculated in part (a).

(c) Use your answer to part (a) and the information from **Table 1** to describe the relationship between the number of carbon atoms present in an alcohol and the energy released on burning. [2]

10. Sodium thiosulfate solution reacts with dilute hydrochloric acid forming a yellow precipitate. This reaction can be investigated using the 'disappearing cross' experiment.

50 cm³ of sodium thiosulfate solution was heated in a water bath until a target temperature was reached. The flask was removed from the water bath and the actual temperature was recorded just before 10 cm³ of hydrochloric acid was added. A stopwatch was started immediately. The time taken for the cross to disappear was recorded. This procedure was repeated at different temperatures. The concentrations of the acid and the sodium thiosulfate solutions were kept the same in each experiment.


The results are shown below.

Target temperature (°C)	Actual temperature recorded (°C)	Time for cross to disappear (s)	Rate 1/time × 10 ⁻³ (s ⁻¹)
20	19	250	4
30	27	167	6
40	39	62	15
50	49	33	30
60	59	17	59

(a)	Suggest a reason for the difference between the target temperature temperature recorded for each reaction.	and the	actual [1]
•••••			······································

Examiner

(b) Choose appropriate scales and plot the rate against the **actual** temperature recorded on the grid. Draw a suitable line. [4]

Temperature (°C)

(c) (i) The following relationship is given in many text books.

"The rate of a reaction doubles for every 10°C rise in temperature."

Use your graph to show that this relationship is true.

[2]

(ii)	Using the relationship given in part (i) find the time , in seconds, it would take for the cross to disappear at 70 °C. Show your working. [3]	Examiner only
	Time = s	
(iii)	At 80 °C the reaction would take less than 5 seconds. Explain why the time recorded at 80 °C would be a less accurate reading than at lower temperatures. [1]	

11

BLANK PAGE

© WJEC CBAC Ltd. (C410UA0-1) Turn over.

11.	(a)	Most steal	t of the hydrogen used in the Haber process is obtained by reacting methane with m.					
			$CH_4(g) + H_2O(g) \rightleftharpoons 3H_2(g) + CO(g)$					
		The	e forward reaction is endothermic.					
		(i)	Explain why a high temperature and a low pressure would give the maximum yield of hydrogen. [3]					
		•••••						
		(ii)	Calculate the atom economy for the manufacture of hydrogen using this reaction.					
			Give your answer to three significant figures. [2]					
			$A_{r}(H) = 1$ $A_{r}(C) = 12$ $A_{r}(O) = 16$					
			Atom economy = %					
		(iii)	Calculate the maximum volume of hydrogen that could be formed at room temperature and pressure from 0.16g of methane. The volume of 1 mol of gas at room temperature and pressure is 0.024 m ³ .					
			Give your answer in m ³ . [3]					

Volume of hydrogen = m^3

			Benefit to pla			
Ammonium	acid contains hy	drogen ions	(H ⁺) and phos	phate ions (PO	4 ³⁻).	
with phosphe	oric acid, H ₃ PC	0₄. Describe	e a titration me	g ammonium h thod for makin uation in your ar	g pure cryst	olution als of QER]
						••••

12. (a) The label shows the ingredients in 'Sparkling Apple Drink'.

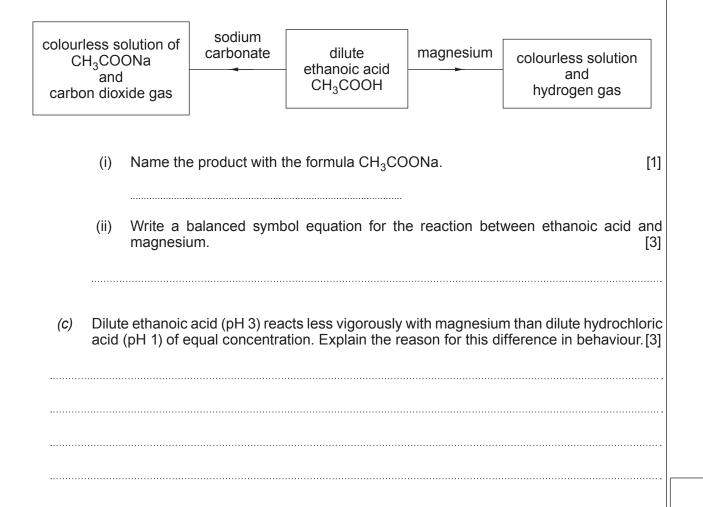
Ingredients:
carbonic acid, apple juice,
sugar, glucose syrup, malic
acid, preservative (sodium
benzoate), artificial sweetener
(saccharin).

A student was asked to find the concentration of carbonic acid in 'Sparkling Apple Drink'. He decided to do this by titrating the drink against sodium hydroxide solution.

(i) He found that 25.0 cm³ of 'Sparking Apple Drink' was neutralised by 15.0 cm³ of sodium hydroxide solution of concentration 0.10 mol/dm³. The relative formula mass of carbonic acid is 62.

$$H_2CO_3 + 2NaOH \longrightarrow Na_2CO_3 + 2H_2O$$

I	Calculate the student's value for the concentration of carbonic acid in	
	mol/dm^3 .	[3]


Concentration =	mol/dm ³
CONCERNATION -	HIIOI/CIIII

II Write this concentration as a value in g/dm³. [1]

(ii) Suggest why the concentration of carbonic acid in 'Sparking Apple Drink' is actually less than that found by the student. [1]

12

(b) The flow diagram shows some reactions of ethanoic acid.

END OF PAPER

© WJEC CBAC Ltd. (C410UA0-1) Turn over.

BLANK PAGE

BLANK PAGE

© WJEC CBAC Ltd. (C410UA0-1) Turn over.

For continuation only.	Examiner only

FORMULAE FOR SOME COMMON IONS

POSITIV	E IONS	NEGATIVE IONS		
Name	Formula	Name	Formula	
aluminium	Al ³⁺	bromide	Br ⁻	
ammonium	NH_4^+	carbonate	CO ₃ ²⁻	
barium	Ba ²⁺	chloride	CI ⁻	
calcium	Ca ²⁺	fluoride	F ⁻	
copper(II)	Cu ²⁺	hydroxide	OH ⁻	
hydrogen	H⁺	iodide	1-	
iron(II)	Fe ²⁺	nitrate	NO ₃	
iron(III)	Fe ³⁺	oxide	O ²⁻	
lithium	Li⁺	sulfate	SO ₄ ²⁻	
magnesium	Mg ²⁺			
nickel	Ni ²⁺			
potassium	K ⁺			
silver	Ag^{+}			
sodium	Na ⁺			
zinc	Zn ²⁺			

	0 2	Helium 2	F Ne Neon Neon 10	35.5 40 Ar Argon 17 18				
	ဖ			32 3 S (Sulfur Chi				
	Ω		14 N Nitrogen	31 P Phosphorus 15	75 As Arsenic	122 Sb Antimony 51	209 Bi Bismuth	
	4		12 C Carbon 6					
	က		11 B Boron 5	27 AI Aluminium 13				
щ					65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80	
TABI					63.5 Cu Copper 29	Ag Silver	Au Gold 79	
DIC						106 Pd Palladium 46		
HE PERIODIC TABLE						103 Rh Rhodium 45		
ie Pe	roup	Jeu			56 Fe Iron 26	101 Ruthenium 44	190 Os Osmium 76	Key
Ė	Q.	Hydrogen			55 Mn Manganese 25	99 Tc Technetium 43	186 Re Rhenium 75	
					52 Cr Chromium 24	96 Mo Molybdenum 7	184 W Tungsten 74	
					51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73	
					48 Ti Titanium 22	91 Zr Zirconium 40	179 Hf Hafnium 72	
						89 Y Yttrium 39	139 La Lanthanum 57	227 Actinium 89
	7		9 Be Beryllium	24 Mg Magnesium 12		88 Sr Strontium 38		226 Ra Radium 88
	~		7 Li Lithium 3	23 Na Sodium	39 K Potassium	86 Rb Rubidium 37		223 Fr Francium 87
			© WJEC CBAC L		(C410UA0-1)			

relative atomic mass