Write your name here Surname	Othe	er names
Pearson Edexcel GCSE	Centre Number	Candidate Number
Chemistr	V/Scion	
		ice
Unit C1: Chemistry		Foundation Tier
	y in Our World	

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 60.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

P48578A
©2017 Pearson Education Ltd.
1/2/1/1/1/

The Periodic Table of the Elements

0	4 He helium 2	20 Ne neon 10	40 Ar argon 18	84 Kr krypton 36	131 Xe xenon 54	[222] Rn radon 86	fully
7		19 fluorine 9	35.5 CI chlorine 17	80 Br bromine 35	127 	[210] At astatine 85	orted but not
9		16 Oxygen 8	32 S sulfur 16	79 Se selenium 34	128 Te tellurium 52	[209] Po polonium 84	ve been repo
2		14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83	s 112-116 ha authenticated
4		12 C carbon 6	28 Si silicon 14	73 Ge germanium 32	119 Sn tin 50	207 Pb	mic numbers a
က		11 boron 5	27 AI aluminium 13	70 Ga gallium 31	115 In indium 49	204 TI thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated
	'			65 Zn zinc 30	112 Cd cadmium 48	201 Hg mercury 80	Elem
				63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79	Rg roentgenium 111
				59 nickel 28	106 Pd palladium 46	195 Pt platinum 78	[271] Ds damstadtium 110
				59 Co cobalt 27	103 Rh rhodium 45	192 Ir iridium 77	[268] Mt meitnerium 109
	1 Hydrogen 1			56 iron 26	Ru ruthenium 44	190 Os osmium 76	[277] Hs hassium 108
·				55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75	[264] Bh bohrium 107
		mass ɔol umber		52 Cr chromium 24	96 Mo molybdenum 42	184 W tungsten 74	[266] Sg seaborgium 106
	Key	relative atomic mass atomic symbol name atomic (proton) number		51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73	[262] Db dubnium 105
		relativ atc atomic		48 Ti titanium 22	91 Zr zirconium 40	178 Hf hafnium 72	[261] Rf rutherfordium 104
				45 Sc scandium 21	89 Y yttrium 39	139 La* Ianthanum 57	[227] Ac* actinium 89
2		9 Be beryllium 4	24 Mg magnesium 12	40 Ca calcium 20	88 Sr strontium 38	137 Ba barium 56	[226] Ra radium 88
~		7 Li Ilthium 3	23 Na sodium 11	39 K potassium 19	85 Rb rubidium 37	133 Cs caesium 55	[223] Fr francium 87

^{*} The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

BLANK PAGE

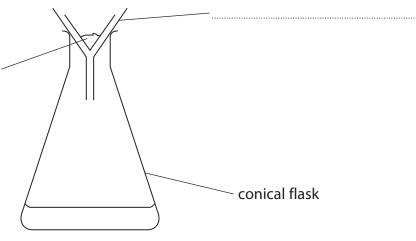
Questions begin on next page.

Answer ALL questions

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

Carbon dioxide

- 1 One of the gases in today's atmosphere is carbon dioxide.
 - (a) Carbon dioxide is detected by bubbling it through limewater.


 A white precipitate forms in the test tube showing that the gas is carbon dioxide.
 - (i) Complete the sentence by putting a cross (\boxtimes) in the box next to your answer.

(1)

Limewater is a solution of

- A hydrochloric acid
- **B** calcium hydroxide
- C sodium chloride
- **D** sodium hydroxide
- (ii) The white precipitate formed is filtered off.

The diagram shows the results of the filtration.

Complete the two labels on the diagram.

(i) State a way in which carbon dioxide is removed from the atmosphere.	(1)
(ii) State a way in which carbon dioxide was added to the atmosphere before humans were on the Earth.	(1)
Methane is a hydrocarbon. When methane burns completely, it reacts with oxygen to form carbon dioxide and one other product. (i) Write the word equation for this reaction.	(2)
 (ii) Which of these is used in the largest amount as a fuel? Put a cross (⋈) in the box next to your answer. A bitumen B diesel oil C hydrogen 	(1)
☑ D oxygen (Total for Question 1 = 8 mai	rks)

Metals

- 2 Metals are found in the Earth's crust.
 - (a) Unreactive metals are found as uncombined metals.Which of these metals is usually found uncombined in the Earth's crust?Put a cross (⋈) in the box next to your answer.

(1)

- A gold
- **B** iron
- □ C potassium
- **D** zinc
- (b) (i) Lead can be produced by heating lead oxide with carbon.

Complete the word equation for this reaction.

(2)

lead oxide + \rightarrow lead +

(ii) In this reaction, lead oxide is reduced.

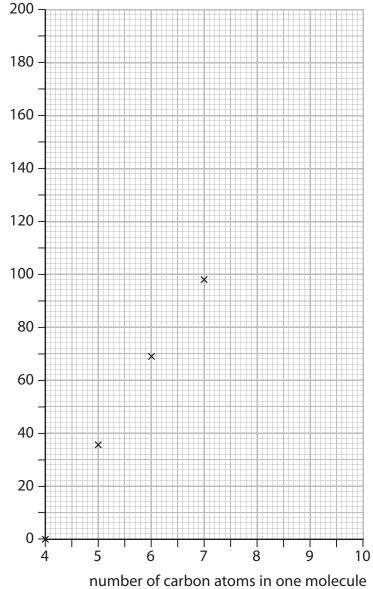
Complete the sentence.

(1)

Lead oxide has been reduced because it has lost

	is extracted fron				e.
Explain wh	y aluminium is n	ot extracted by I	heating with car	bon.	(2)
(d) There are m	nany uses of alur	ninium. These u	ises are related to	o its properties.	
The table s	hows information	n about the prop	perties of alumin	ium and steel.	
metallic substance	density / kg m ⁻³	cost per tonne / £	relative strength	relative ability to conduct electricity	relative resistance to corrosion
aluminium	2700	1000	high	good	good
steel	7820	100	very high	good	poor
Use the information in the table to explain which properties of aluminium make it more suitable than steel for use in overhead power cables. (2)					
			(Total f	or Question 2 =	= 8 marks)

Alkanes


3 (a) The alkanes are hydrocarbons.

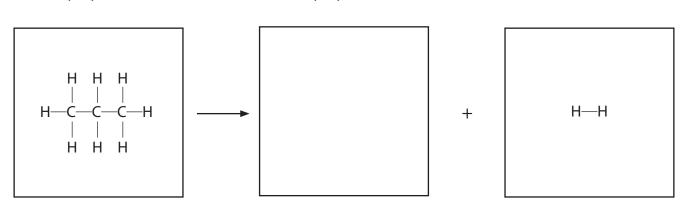
The table shows the number of carbon atoms per molecule and the boiling point for some alkanes.

alkane	number of carbon atoms in one molecule	boiling point (°C)
butane	4	0
pentane	5	36
hexane	6	69
heptane	7	98
octane	8	126
nonane	9	151

The boiling points for butane, pentane, hexane and heptane are plotted on the graph.

propane

(i)	Plot the boiling points for octane and nonane and draw the line of best fit.	
(i)	Flot the boiling points for octaine and horiane and draw the line of best lit.	(2)
(ii)	Describe the trend shown by the line of best fit on the graph.	(2)
		(-)
	Extend the line on your graph to estimate the boiling point of the alkane with ten carbon atoms in one of its molecules.	
		(2)
	boiling point =	
(iv)	Complete the sentence by putting a cross (\boxtimes) in the box next to your answer.	(1)
	All alkanes	(1)
\times	A have molecules containing oxygen atoms	
\times	B form a colourless mixture when shaken with bromine water	


(b) When propane is heated it can form propene and one other product.

have molecules that each have a C=C bond

C can burn in a limited supply of air to form carbon monoxide

Complete the word equation and then draw the structure of propene, showing all bonds, in the empty box.

(3)

propene

(Total for Question 3 = 10 marks)

		Limestone	
4	(a)	Limestone is a rock which often occurs as layers and contains fossils.	
		Which type of rock is limestone?	
		Put a cross (☒) in the box next to your answer.	(4)
			(1)
	X	A igneous	
	X	B magma	
	X	C metamorphic	
	X	D sedimentary	
	(b)	Give a large-scale use of limestone.	(1)
	(c)	Limestone is extracted in large quantities from quarries.	
		Explain why some people might object to the opening of a limestone quarry near to where they live.	

(d)	Limestone	is a	naturally	occurring	form of	of calciur	n carbonate.
-----	-----------	------	-----------	-----------	---------	------------	--------------

Calcium carbonate can be broken down by heating to form calcium oxide and carbon dioxide.

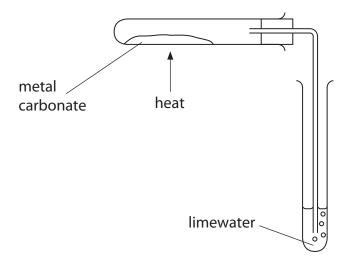
(i) Write the word equation for this reaction.

(2)

(ii) When 5.0 g of calcium carbonate was completely decomposed, 2.8 g of calcium oxide was formed.

Calculate the mass of carbon dioxide gas given off in this reaction.

(1)


mass of carbon dioxide =g

(e) A student investigated the ease of decomposition of three metal carbonates. Equal masses of each metal carbonate were heated.

The time taken for carbon dioxide to be detected was measured.

The following apparatus was used.

The table shows the observations and the time taken for carbon dioxide to be detected.

metal carbonate	observations	time taken for carbon dioxide to be detected / s
calcium carbonate	powder remains white	180
zinc carbonate	white powder turns yellow when hot but is white when cold	105
copper carbonate	green powder turns black	36

(i) All the carbonates have undergone a reaction.

Give the evidence that shows that all three carbonates have reacted.

(1)

of these
(2)
l = 10 marks)

Polymers and fuels

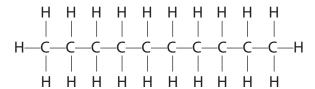
5 (a) Complete the sentence by putting a cross (\boxtimes) in the box next to your answer.

(1)

Methods used to dispose of polymers are recycling, burning and putting in a landfill site.

When waste polymers are burned, most of the products are gases.

An advantage of disposing of polymers by burning is


- A carbon dioxide is released
- B toxic gases are released
- C the mass of solid waste is reduced
- **D** the solid waste is recycled
- (b) The formula of the polymer poly(chloroethene) is shown.

(i) Give the name of the monomer used to make poly(chloroethene).

(ii) Describe how monomer molecules form polymer molecules.

(c) The structure of a molecule of a substance found in a fuel is

Explain why this substance is described as a **saturated hydrocarbon**.

*(d)	Many different substances are used as fuels.	
	Several factors contribute to making a substance a good fuel.	
	Examples of good fuels are ethanol, methane and petrol.	
	Describe some of the factors that make a substance a good fuel, explaining the	
	advantages and disadvantages of one of the fuels listed above.	(6)

(Total for Question 5 = 12 marks)
(I I I I I I I I I I I I I I I I I I I

Hydrochloric acid

6 (a) Dilute hydrochloric acid can be used to make salts.

These salts are called chlorides.

Which of the following will **not** react with dilute hydrochloric acid to produce zinc chloride?

Put a cross (☒) in the box next to your answer.

(1)

- **A** zinc carbonate
- B zinc hydroxide
- C zinc oxide
- **D** zinc sulfate
- (b) Hydrochloric acid is present in the stomach.
 - (i) Describe the purpose of hydrochloric acid in the stomach.

(2)

(ii) Indigestion tablets can be used to neutralise excess hydrochloric acid in the stomach.

Some indigestion tablets contain aluminium hydroxide.

Write the word equation for the reaction of aluminium hydroxide with hydrochloric acid.

(2)

(c) Electrolysis can be used to decompose hydrochloric acid. The products of electrolysis are hydrogen and chlorine.

Complete the balanced equation for this reaction.

(1)

*(d) Chlorine and hydrogen are manufactured by the electrolysis of saturated sodium chloride solution. The gases have important uses so must be produced in large amounts. However both gases are hazardous and leaks of the gases would be very serious. Describe the important uses and the hazards of each gas and the test for chlorine that might be used to detect a small leak of the gas.	
	(6)

TOTAL FOR PAPER = 60 MARKS
(Total for Question 6 = 12 marks)

