

 (Centr	e Nu	mber
Can	didat	e Nu	mber
Can	didat	e Nu	mber

General Certificate of Secondary Education 2017

GCSE Chemistry

Unit 2

Higher Tier

[GCH22]

GCH22

WEDNESDAY 21 JUNE, MORNING

TIME

1 hour 45 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

You must answer the questions in the spaces provided.

Do not write outside the boxed area on each page or on blank pages.

Complete in black ink only. Do not write with a gel pen.

Answer **all seven** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 115.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

Quality of written communication will be assessed in Question 4(d) and 6(b)(iv).

A Data Leaflet, which includes a Periodic Table of the Elements, is included in this question paper.

1 Aluminium metal is obtained from its ore by electrolysis. Aluminium is used to manufacture drinks cans.

ng Learning
Rowardin
Day Learning

0

E

)

DE ng Learning

)

E

Rewardin

DED og Learning

ng Learning
Rewarding

)

Rewardin

Rewarding ag Learning

G:

© Science Photo Library

(a)	(i)	Name the ore from which aluminium is obtained.	[4]
	(ii)	State two reasons why the purified ore is dissolved in molten cryolite. 1	_ [1]
		2	
	(iii)	Write a half equation for the production of aluminium at the cathode.	_ [2]
			_ [3]

	(iv) Name the electrolysis product obtained at the anode and write a half equation for the reaction which occurs at the anode.	
	Product:	[1]
	Half equation:	[3]
(b)	An aluminium manufacturing company is exploring the possibility of setting up an aluminium extraction plant. State two factors that need to be considered by the company when choosing	
	site for the aluminium extraction plant. 1	
	2	
		[2]

[Turn over

10556

Œ

Rewarding L

Rewarding L

Committee Com

Rewarding L

Rowarding L

A Learning

GE Rewarding L

Rowarding L

Rewarding L

Rowarding L

Rowarding L

Rowarding L

Rowarding L

Rowarding L

			r
			[;
(ii)	Complete the table below		
	Name	Molecular formula	Physical state at room temperature
	ethene		gas
		C_3H_6	
			[3
(iii)	What is the functional gro	up of the alkenes?	
			[
		Name ethene	ethene

ng Learning
Rewardin

Rowardin

Powerdin

Rowardin

Rowardin

Rowardin

Rowardin

Rowardin

Rowardin

Rowardin

Rowardin

Rewardin

Remarding
Sp Learning

Rowardin

Rewarding

Rewarding

Rewarding

Rewarding

yg Learning

Rewardin

Day Learning
Rewardin
Page Learning
Rewardin
Page Learning
Rewardin

Rewardin 2000 2012 Learning Rewardin

Rewarding

2 Learning

Rewarding

Rewardin Department

Rewardin

Rewardin 200 201 Learning

(b)	Vine	egar contains the weak acid, ethanoic acid.	
	(i)	Draw the structural formula of ethanoic acid.	
			[1]
	(ii)	What is meant by the term weak acid?	
			[1]
(c)	Etha	anoic acid undergoes typical reactions of acids.	
	(i)	Write a balanced symbol equation for the reaction of ethanoic acid with magnesium.	
			[3]
	(ii)	What is observed when magnesium reacts with ethanoic acid?	
			[3]
		[Turr	over

Rewarding L

Rewarding L

Rowarding L

Company

Jeaming

GE
Rewarding L

GE
Rewarding L

Rewarding L

Learning

Rowarding L

Rewarding L

Rowarding Loaming

Rowarding Loaming

Rowarding Loaming

Rowarding Loaming

Rowarding Loaming

Rowarding Loaming

A Learning

GE Rewarding L

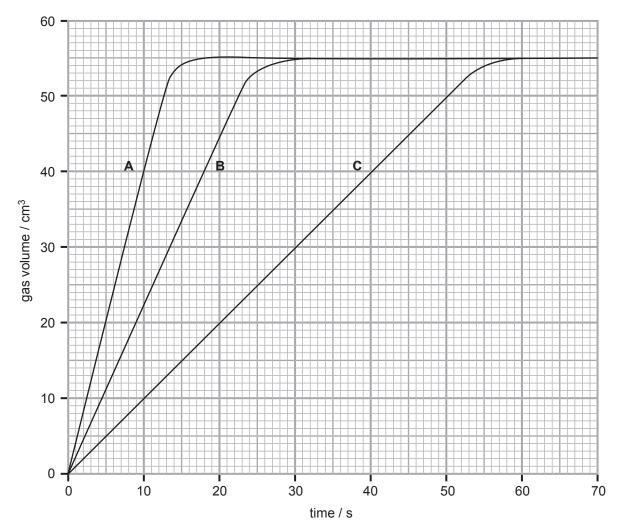
Rowarding L

Rewarding L

Rowarding L

Rowarding L

Rowarding L


Rowarding L

Rowarding L

Rowarding L

- 3 The rate of a chemical reaction is affected by several factors including the concentration of the reactants, temperature and presence of a catalyst.
 - (a) To investigate the effect of concentration of acid on the rate of reaction, a student reacted a 0.055 g strip of magnesium ribbon with solutions of hydrochloric acid of three different concentrations (0.5, 1.0 and 1.5 mol/dm³). All reactions were carried out at room temperature. The results obtained are shown on the graph below.

	(i)	State and explain which line (A, B or C) was obtained using 1.5 mol/dm ³ hydrochloric acid.	
		Line	
			[3]
	(ii)	The student repeated the experiment using hydrochloric acid of concentration 2.0 mol/dm ³ . Sketch a line on the same axes to represent t results obtained and label this curve D.	he [3]
(b)		plain in terms of particles why the rate of reaction increases as temperature reases.	;
			_
			[3]
(c)		e activation energy required for a reaction is affected by the presence of a alyst. What is meant by the term activation energy?	
			[1]
		[Turn	over

Rewarding L

Rewarding L

Rowarding L

Company

Rewarding L

Rewarding L

Learning

Rowarding L

GE Rewarding L

Rowarding Loaming

Rowarding Loaming

Rowarding Loaming

Rowarding Loaming

Rowarding Loaming

Rowarding Loaming

A Learning

GE Rewarding L

Rowarding L

Rewarding L

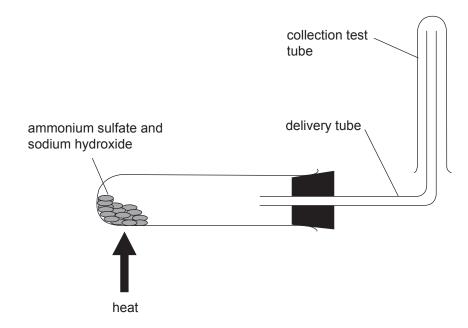
Rowarding L

Rowarding L

Rowarding L

Rowarding L

Rowarding L


Rowarding L

4 Ammonia is an important chemical in the production of explosives and fertilisers. The Haber process is used to produce ammonia industrially.

)

(a) Ammonia can be prepared in the laboratory by the reaction of an ammonium compound with an alkali using the apparatus shown below.

(i) State two physical properties of ammonia gas.

1. ______

2. ______[2]

(ii) Write a balanced symbol equation for the preparation of ammonia from ammonium sulfate and sodium hydroxide.

_____ [3]

(b)	Nitr	ogen reacts with hydrogen in the Haber process according to the equatio	n:
		$N_2 + 3H_2 \rightleftharpoons 2NH_3$	
	(i)	Explain why nitrogen is described as being reduced in this reaction.	
			[2]
	(ii)	What is meant by ⇒ in the equation above?	
			_ [1]
	(iii)	Describe the test used to identify ammonia gas.	
			_ [3]

[Turn over

10556

Œ

Rewarding L

Company

Learning

L

A Learning

Rewarding L

Rowarding L.

A Learning

GE Rewarding L

Rowarding L

Rowarding L

Rowarding L

Rowarding L

Rowarding L

Rowarding L

Rewarding L

Rowarding L

Rowarding L

Rowarding L

Rowarding L

Rowarding L

	nmonia reacts with oxygen producing nitrogen and water.	
(i)	Write a balanced symbol equation for this reaction.	
(ii)	Explain why nitrogen gas is unreactive.	

Signaming

Rewarding

Signaming

Rewardin

Remarding
Sp Learning

Rewardin

Remarding
Towarding
Toward

Rewarding

10 Carriery

10 Carriery

10 Carriery

11 Carriery

12 Carriery

13 Carriery

14 Carriery

15 Carriery

16 Carriery

17 Carriery

18 Carr

rewarding ag Learning Rewarding

Rewardin 200 201 Learning

(d)	A solution of ammonia is added slowly, until it is in excess, to separate solutions of copper(II) sulfate and magnesium sulfate. Describe the observations and write equations for the reactions.
	Your answer should include:
	 observations for both reactions ionic equations for the precipitation reactions.
	In this question you will be assessed on your written communication skills including the use of specialist scientific terms.
	[6]
	[Turn over

Rewarding L

Learning L

Learning

Rowarding L

Rewarding L

I Learning

C. C. Rewarding I.

C. Rewarding I.

C. C. Rewarding I.

C. C. Rewarding I.

GE Rewarding L

Rowarding L.

(a)	Cop	oper reacts when heated in air.
		te a balanced symbol equation for the reaction which occurs when coppe ted in air.
(b)	Cop	oper(II) carbonate decomposes when heated.
	(i)	What colour change is observed in this reaction?
		From to
	(ii)	Write a balanced symbol equation for the decomposition of copper(II) carbonate on heating.
(c)		oper(II) oxide may be reduced in the laboratory by heating in a stream of lrogen.
	(i)	Write the balanced symbol equation for the reaction.

Sy Learning
Rewarding
Sy Learning

Rewardin

Remarded, Sp. Learning Sp. Lear

Remarding
To Laurening

Rewarding

10 Carrier

10 Carr

ng Learning
Rewarding

Rewardin 200 201 Learning

	((ii)	Draw a labelled diagram of the assembled apparatus used to safely heat a sample of copper(II) oxide in a stream of hydrogen in the laboratory.
			[4]
	1	met	reduction of copper(II) oxide may be carried out in the laboratory using hane instead of hydrogen. The reaction produces copper, carbon dioxide water.
	((i)	Write a balanced symbol equation for the reduction of copper(II) oxide using methane.
			[3]
	((ii)	Anhydrous copper(II) sulfate is used to test for water. What is meant by the term anhydrous?
			[1]
10556			[Turn over
10556			

Œ

Rewarding L

Rowarding L

Rewarding L

Rewarding L

Learning

GE Rewarding L

Rowarding L.

A Learning

GE Rewarding L

Rowarding L

Rewarding L

Rowarding L

- 6 Strontium is a typical Group 2 metal. It is toxic to humans in low doses.
 - (a) The photograph below shows the vigorous reaction of strontium with water.

ng Learning
Rowardin
Day Learning

E

G:

)

ng Learning
Rewardin

G:

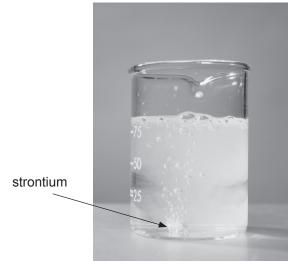
DED va Leagning

)

E

)

0


)

Rewardin Pag ng Learning

)

G:

[3]

© Andrew Lambert Photography / Science Photo Library

(i)	Write a balanced symbol equation for the reaction of strontium with water.
	[3]
(ii)	Compare the observations made when strontium reacts with water with the observations made when potassium reacts with water.

(b) The table below shows if a displacement occurs (\checkmark) when a metal is added to a solution of a metal ion.

metal ion solution metal	Strontium nitrate	Calcium nitrate	Cadmium(II) nitrate	Copper(II) nitrate	Iron(II) nitrate	Silver nitrate
Strontium		√	✓	√	✓	✓
Calcium	×		✓	√	✓	✓
Cadmium	×	×		√	×	✓
Copper	×	×	×		×	✓
Iron	×	×	√	√		✓
Silver	×	×	×	×	×	

(i)	Write a balanced symbol equation for the reaction between strontium and silver nitrate.
	Silver mudic.

(ii)	Name the products when calcium reacts with cadmium(II) nitrate solution.

[Turn over

____[3]

10556

Rewarding L

Common Com

(iii) On the reactivity series below indicate the position of strontium and cadmium clearly using the information from the reactions in (a) and (b). potassium calcium magnesium aluminium Reactivity increases zinc iron copper silver [3] (iv) Explain, in terms of electrons, why the reaction between iron and cadmium(II) nitrate is a redox reaction. $\text{Fe} \, + \, \text{Cd}(\text{NO}_3)_2 \rightarrow \text{Fe}(\text{NO}_3)_2 \, + \, \text{Cd}$ In this question you will be assessed on your written communication skills including the use of specialist scientific terms.

)

)

)

)

)

)

0

)

)

)

)

)

Rewardin Day 1g Learning

6

•		
		[6]
		[0]
(c)	Thi	arium meal medical test uses a compound of another Group 2 metal, barium. s compound allows soft tissues like the stomach and upper intestine to be ayed.
	(i)	Name the barium compound used.
		[1]
	(ii)	State why this compound is used despite the toxicity of barium compounds.
		[1]
		[Turn over
10556		

GE Rewarder

Rewarding L

Annual Company

A Learning

Rewarding L.

Solution

Compared to the compar

Rewarding L.

Rowarding L.
Rowarding L.
Rowarding L.
Rowarding L.
Rowarding L.
Rowarding L.
Rowarding L.
Rowarding L.
Rowarding L.

A Learning

Rewarding L

Rewarding L.

Panning

Penewarding L.

Rewarding L.

Rewarding L.

Rewarding L.

Rewarding L.

Rewarding L.

Rewarding L.

7	Barium	hydroxide	forms o	rvstals	with the	formula	Ba(OH). 8H.O
•	Danum	i i y di O A i d C	IOIIII3 C	n yotalo	WILLI LIIC	, ioiiiiuia	ווטאם	12.01 120.

(a)	Calculate the mass of barium hydroxide crystals, Ba(OH) ₂ .8H ₂ O, required to
. ,	make 1000 cm ³ of a 0.25 mol/dm ³ solution of barium hydroxide.
	(Relative atomic masses: $H = 1$: $O = 16$: $Ba = 137$)

(b) A different solution of a metal hydroxide, $M(OH)_2$, was made by dissolving 15.25 g of solid $M(OH)_2$ in 250 cm³ of water.

Calculate the concentration of the solution in g/dm³.

(c)	To determine the identity of M(OH) ₂ , a titration was carried out. 25.0 cm ³ of the
	M(OH) ₂ solution from (b) were placed in a conical flask with a few drops of
	bromothymol blue indicator. The conical flask was placed on a white tile and
	titrated with 1.25 mol/dm ³ hydrochloric acid until the end-point.

Indicator	Colour in acid solution	Colour in neutral solution	Colour in alkaline solution
bromothymol blue	yellow	green	blue

(i)	Why is a white tile used in this practical technique?	
		[1]
(ii)	Use the table above to determine the colour change of the indicator end-point.	at the
	From to	_ [1]
(iii)	State two ways in which the end-point may be determined accurately 1	<i>y</i> .
	2	[2]

[Turn over

10556

Œ

Rewarding L

Rowarding L

Rewarding L

Rowarding L

Rowarding L

Rowarding L

Rowarding L

Rowarding L

(d) The results obtained in the titration are shown in the table below.

	Rough titration	Accurate titration 1	Accurate titration 2
Final burette reading (cm ³)	20.9	40.8	20.1
Initial burette reading (cm ³)	0.0	20.9	0.0
Titre (cm ³)	20.9	19.9	20.1

(i) Calculate the average titre.

The equation for the reaction is represented by:

$$\mathsf{M(OH)}_2 \,+\, 2\mathsf{HCI} \rightarrow \mathsf{MCI}_2 \,+\, 2\mathsf{H}_2\mathsf{O}$$

(ii) Calculate the concentration of $M(OH)_2$ in mol/dm^3 .

(iii) Use your answers from (b) and (d)(ii) to calculate the relative formula mass of M(OH) ₂ and state the identity of element M. Show your working out clearly.
Identity of M =[3]

THIS IS THE END OF THE QUESTION PAPER

10556

Œ

Rewarding L

Rewarding L.

Rewarding L.

Rewarding L.

Rewarding L.

Rewarding L

Q Learning

Rewarding L

GE Rewarding L

Rewarding L

Carring

Rewarding L

Rewarding L

Rewarding L

Rowarding L

GE Rewarding L

Rowarding L

Rowarding L

Rowarding L

Rowarding L

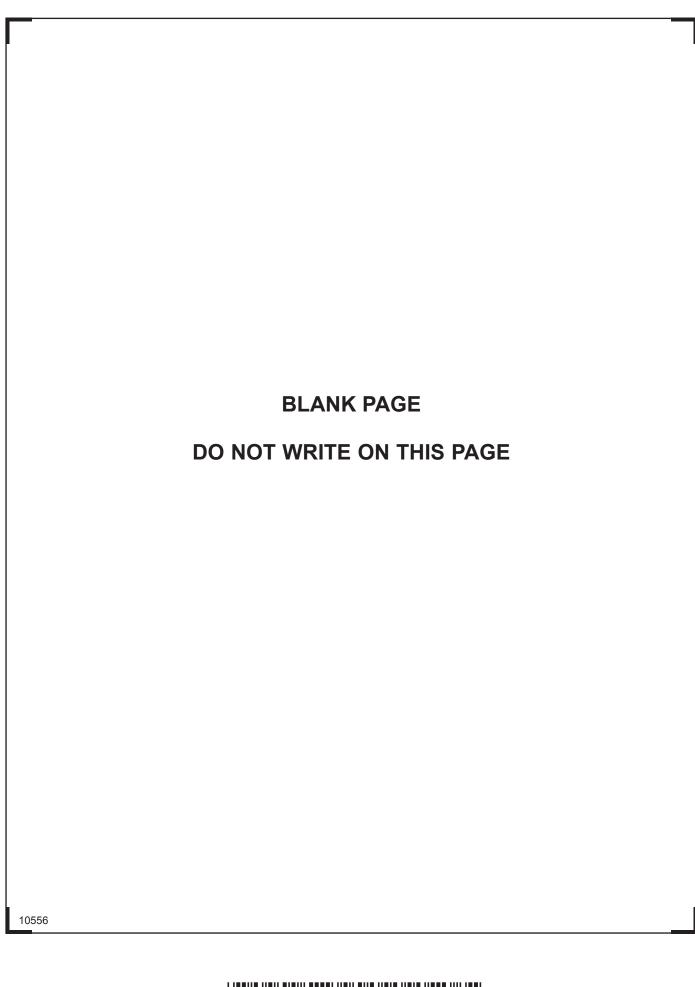
Rowarding L

Rowarding L

Rewarding L

Spanning
Spa

Rowardin
Page Learning


ng Learning
Rewardin

PD Rewardin ag Learning G. DED og Learning Rewardin GG: G. DED na Learning G:) og Learning Rewardin DED Na Learning Bewardin DED ig Learning Rewardin ag Learning

ng Learning
Rewardin

G:

DO NOT WRITE ON THIS PAGE

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	

To Learning

Rewardin

Rewardin

Rewardin

Rewardin

Rewardin

newarding ng Learning

Rewardin

)

Rowarding

Page Learning

Rowarding

E

ng Learning
Rewarding
ng Learning

DE ng Learning

Rowarding

Rowarding

Rowarding

Rowarding

Rowarding

)

G.

ag Learning

Rewards

20 xg Learning

Rewarding ag Learning

Rewardin

G:

Total Marks

Examiner Number

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

SYMBOLS OF SELECTED IONS

Positive ions

Name	Symbol
Ammonium	NH ₄
Chromium(III)	Cr ³⁺
Copper(II)	Cu ²⁺
Iron(II)	Fe ²⁺
Iron(III)	Fe ³⁺
Lead(II)	Pb ²⁺
Silver	Ag ⁺
Zinc	Zn 2+

Negative ions

Name	Symbol
Carbonate	CO ₃ ²⁻
Dichromate	Cr ₂ O ₇ ²⁻
Ethanoate	CH₃COO¯
Hydrogen carbonate	HCO₃
Hydroxide	OH ⁻
Methanoate	HCOO ⁻
Nitrate	NO ₃
Sulfate	SO ₄ ²⁻
Sulfite	SO ₃ ²⁻

SOLUBILITY IN COLD WATER OF COMMON SALTS, HYDROXIDES AND OXIDES

Soluble
All sodium, potassium and ammonium salts
All nitrates
Most chlorides, bromides and iodides EXCEPT silver and lead chlorides, bromides and iodides
Most sulfates EXCEPT lead and barium sulfates

Insoluble

Most carbonates

EXCEPT

sodium, potassium and ammonium carbonates

Calcium sulfate is slightly soluble

Most hydroxides

EXCEPT

sodium, potassium and ammonium hydroxides

Most oxides

EXCEPT

sodium, potassium and calcium oxides which react with water

COUNCIL FOR THE CURRICULUM EXAMINATIONS AND ASSESSMENT 29 Clarendon Road, Clarendon Dock, Belfast BT1 3BG

DATA LEAFLET

For the use of candidates taking Science: Chemistry,

Science: Double Award

or Science: Single Award

Copies must be free from notes or additions of any kind. No other type of data booklet or information sheet is authorised for use in the examinations.

Contents	Page
Periodic Table of the Elements	2–3
Symbols of Selected Ions	4
Solubility of Common Salts	4

gcse science

chemistry double award single award

Rewarding Learning

THE PERIODIC TABLE OF ELEMENTS Group

1	n
- (U

1		
	H	
Ну	/drogen	

1	2						Hydrogen 1					3	4	5	6	7	Helium 2
7 Lithium 3	9 Be Beryllium											Boron 5	Carbon	14 N Nitrogen 7	16 Oxygen 8	19 F Fluorine 9	Neon 10
Na Sodium	Mg Magnesium 12											Aluminium 13	28 Si Silicon 14	Phosphorus	32 Sulfur 16	35.5 Chlorine 17	40 Ar Argon 18
39	40	45	48	51	52	55	56	59	59	64	65	70	73	75	79	80	84
Potassium 19	Calcium 20	Sc Scandium 21	Ti Titanium 22	Vanadium 23	Cr Chromium 24	Mn Manganese 25	Fe Iron 26	Cobalt 27	Nickel 28	Cu Copper 29	Zn zinc 30	Gallium 31	Germanium 32	As Arsenic 33	Se Selenium 34	Bromine 35	Krypton 36
Rb Rubidium 37	Strontium 38	Yttrium 39	91 Zr Zirconium 40	93 Nb Niobium 41	96 Mo Molybdenum 42	99 TC Technetium 43		Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium 49	119 Sn 50	Sb Antimony 51	Tellurium 52	127 lodine 53	131 Xe Xenon 54
133 CS Caesium	Barium	139 La*	178 Hf	181 Ta	184 W Tungsten	186 Re Rhenium	190 Os Osmium	192 Ir Iridium	195 Pt Platinum	197 Au Gold	Hg Mercury	204 TI Thallium	Pb	Bi Bismuth	Polonium	210 At Astatine	Radon
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
223	226	227	261	262	263	262	265	266	269	272	285						

* 58 – 71 Lanthanum series †90 – 103 Actinium series

Ra

Radium

Fr

Francium

a = relative atomic mass b X (approx)

89

 Ac^{\dagger}

Actinium Rutherfordium

104

Db Dubnium

Sg Seaborgium 106

Bh

Bohrium

107

Hs

Hassium

108

109

x = atomic symbol

b = atomic number

	140	141	144	147	150	152	157	159	162	165	167	169	173	175
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Но	Er	Tm	Yb	Lu
	Cerium 58	Praseodymium 59	Neodymium	Promethium		Europium	Gadolinium	Terbium 65	Dysprosium 66	Holmium	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71
3	232	231	238	237	242	243	247	245	251	254	253	256	254	257
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	Thorium 90	Protactinium		Neptunium 93		Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101		Lawrencium 103

Mt Ds Rg Cn
Meitnerium Darmstadtium Roentgenium Copernicium